Abstract-Transforming growth factor- (TGF-) is a ubiquitous growth-regulating protein with an essential role in tissue repair and formation of extracellular matrix (ECM). To better understand the role of different isoforms of TGF- in the cardiac remodeling process induced by norepinephrine (NE), the expression of TGF-1, TGF-2, and TGF-3 was studied and compared with the expression of collagen. NE (0.1 mg/kg ⅐ h) was intravenously infused in female and male Sprague-Dawley rats for several time periods, and freshly obtained ventricular myocardium after 1 day was dissociated into myocyte and nonmyocyte fractions. Prazosin (0.1 mg/kg ⅐ h) and metoprolol (1 mg/kg ⅐ h) were used to block ␣-and -adrenoceptors, respectively. After NE infusion, the three isoforms of TGF- were differentially induced as far as the magnitude and the time course is concerned. The increased expression of TGF-2 started earlier with a maximum after 12 hours and was more pronounced (10-fold elevation) than that of the other two isoforms, with a clear specificity for the left ventricle in female hearts. This specificity was also seen in male rats with 16-fold elevation of TGF-2 after 1 day of NE-stimulation. The increase of TGF-2 was significant only in the myocyte fraction obtained from female as well as from male hearts. The expression of the mRNA of all TGF- isoforms of collagen type I and type III, and of the matrix metalloproteinase (MMP)-2 and its inhibitor TIMP-2 was reduced predominantly by ␣-adrenoceptor blockade with prazosin. The increase in TGF- isoforms correlated with that of the mRNA expression of collagens, MMP-2 and TIMP-2.
The hyperglycaemia and oxidative stress, that occur in diabetes mellitus, cause impairment of membrane functions in cardiomyocytes. Also reduced sensitivity to Ca-overload was reported in diabetic hearts (D). This enhanced calcium resistance is based on remodelling of the sarcolemmal membranes (SL) with down-regulated, but from the point of view of kinetics relatively well preserved Na,K-ATPase and abnormal Mg- and Ca-ATPase (Mg/Ca-ATPase) activities. It was hypothesised that in these changes may also participate the non-enzymatic glycation of proteins (NEG) and the related free radical formation (FRF), that decrease the membrane fluidity (SLMF), which is in reversal relationship to the fluorescence anisotropy (D 0.235 +/- 0.022; controls (C) 0.185 +/- 0.009; p < 0.001). In order to check the true role of SLMF in hearts of the diabetic rats (streptozotocin, single dose, 45 mg/kg i.v.) animals were treated in a special regimen with resorcylidene aminoguanidine (RAG 4 mg/kg i.m.). The treatment with RAG eliminated completely the diabetes-induced decrease in the SLMF (C 0.185 +/- 0.009; D + RAG 0.167 +/- 0.013; p < 0.001) as well as in NEG (fructosamine microg x mg(-1) of protein: C 2.68 +/- 0.14; D 4.48 +/- 0.85; D + RAG 2.57 +/- 0.14; p < 0.001), and FRF in the SL (malondialdehyde: C 5.3 +/- 0.3; D 8.63 +/- 0.2; D + RAG 5.61 +/- 0.53 micromol x g(-1); p < 0.05). Nevertheless, the SL ATPase activity in diabetic animals was not considerably influenced by RAG (increase in D + RAG vs. D 3.3%, p > 0.05). On the other hand, RAG increased considerably the vulnerability of the diabetic heart to overload with external Ca2+ (C 100% of hearts failed, D 83.3%, D + RAG 46.7% of hearts survived). So we may conclude, that: (i) The NEG and FRF caused alterations in SLMF, that accompanied the diabetes-induced remodelling of SL, also seem to participate in the protection of diabetic heart against Ca2+-overload; (ii) Although, the changes in SLMF were shown to influence considerably the ATPase activities in cells of diverse tissues, they seem to be little responsible for changes in ATPases-mediated processes in the SL of chronic diabetic hearts.
In various models of cardiac hypertrophy, e.g. treatment of rats with norepinephrine infusion or pressure overload, increased expression of cytokines together with increase in extracellular matrix proteins (ECMP) was reported. In this study the effect of triiodothyronine (T3) on the expression of mRNA for cytokines and ECMP was investigated. Female Sprague-Dawley rats were treated daily with T3 in a dose of 0.2 mg x kg(-1) of body weight s.c. Changes in the left (LV) and right (RV) ventricular function were measured 6, 24, 48, 72 h and 7 and 14 days after the first T3-injection using Millar ultraminiature pressure catheter transducers. RNA was isolated from LV and RV tissue, and the expression of cytokines and ECMP was measured using the ribonuclease protection assay. T3-treatment induced a significant increase in LV dP/dtmax and RV dP/dtmax, (p < 0.05) 24 h after the first injection of T3 together with an increase in heart rate (p < 0.01). The RV systolic pressure increased 48 h after the first T3 injection, whereas the LV systolic pressure remained unchanged. After 48 h the heart weight to body weight ratio was increased (p < 0.01). Hypertrophy of the RV was more prominent than that of the LV (155.9 vs. 137.7%). In all groups the expression of mRNA for interleukins (IL) IL-6, IL-1beta, IL-1alpha and tumour necrosis factor (TNF)-alpha in both ventricles did not change (p > 0.05). There was a significant increase in the mRNA for colligin 24 h after the T3 injection in both LV (p < 0.01) and RV (p < 0.05). This was followed by an increase in the mRNA for collagen I and III 72 h after the first T3-dose (p < 0.05 in RV; p < 0.01 in LV). At this point, the mRNA for tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was increased (p < 0.01) in the LV only. Moreover, after 7 days also the mRNA for matrix metalloproteinase (MMP)-2 increased (p < 0.01) in the LV. Both, TIMP-2 and MMP-2 were increased in the RV only after 14 days (p < 0.05). The gelatinase activity of MMP-2, however, was unchanged in both ventricles. The T3-induced cardiac hypertrophy was not accompanied by fibrosis as measured by the Sirius red staining after 14-days of T3-treatment. The moderate increase in mRNA for ECMP and MMP may be attributed more to the increasing mass of the ventricles with the accompanying remodelling of the ECM than to increased fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.