Visible‐light emitting single‐walled carbon nanotubes (SWNTs)/organic hybrids have been successfully synthesized and promise to be a photon source to be used in future optoelectronic devices. The nanohybrids are “peapods” having sexithiophene molecules inside the hollow space of SWNTs. High‐resolution transmission electron microscopy and optical probes show evidence of the encapsulation while density functional theory calculations confirm the experimental findings and provide deeper insight into stability and electronic properties of these systems.
Uranium (U) is a ubiquitous element in the Earth's crust at~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO 2 as nanocrystals (~1-2 nm) with random orientations inside nanowires. Through nanoparticle reorientation and coalescence, the nanowires collapse into ordered UO 2 nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination.
One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a series of oligothiophene molecules ("peas"). The physical properties of these peapods are depicted by using aberration-corrected high-resolution transmission electron microscopy, Raman spectroscopy, and other optical methods including steady-state and time-resolved measurements. Visible photoluminescence with quantum yields up to 30% is observed for all the hybrids. The underlying electronic structure is investigated by density functional theory calculations for a series of peapods with different molecular lengths and tube diameters, which demonstrate that van der Waals interactions are the bonding mechanism between the encapsulated molecule and the tube.
Arsenic contamination in groundwater is pervasive throughout deltaic regions of Southeast Asia and threatens the health of millions. The speciation of As in sediments overlying contaminated aquifers is poorly constrained. Here, we investigate the chemical and mineralogical compositions of sediment cores collected from the Mekong Delta in Vietnam, elucidate the speciation of iron and arsenic, and relate them to the sediment depositional environment. Gradual dissolution of ferric (oxyhydr)oxides with depth is observed down to 7 m, corresponding to the establishment of reducing conditions. Within the reduced sediment, layers originating from marine, coastal or alluvial depositional environments are identified and their age is consistent with a late Holocene transgression in the Mekong Delta. In the organic matter- and sulfur-rich layers, arsenic is present in association with organic matter through thiol-bonding and in the form of arsenian pyrite. The highest arsenic concentration (34-69 ppm) is found in the peat layer at 16 m and suggests the accumulation of arsenic due to the formation of thiol-bound trivalent arsenic (40-55%) and arsenian pyrite (15-30%) in a paleo-mangrove depositional environment (∼8079 yr BP). Where sulfur is limited, siderite is identified, and oxygen- and thiol-bound trivalent arsenic are the predominant forms. It is also worth noting that pentavalent arsenic coordinated to oxygen is ubiquitous in the sediment profile, even in reduced sediment layers. But the identity of the oxygen-bound arsenic species remains unknown. This work shows direct evidence of thiol-bound trivalent arsenic in the Mekong Delta sediments and provides insight to refine the current model of the origin, deposition, and release of arsenic in the alluvial aquifers of the Mekong Delta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.