Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides.Methodology/Principal FindingsIn a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine.Conclusions/SignificanceCompared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WAT.
Background. This is the second of two review parts aiming at describing the major physiological roles of fatty acids, as well as their applications in specific conditions related to human health.Results. The review included the current literature published in Pubmed up to March 2011. In humans, fatty acids are a principle energy substrate and structural components of cell membranes (phospholipids) and second messengers. Fatty acids are also ligands of nuclear receptors affecting gene expression. Longer-chain (LC) polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid are precursors of lipid mediators such as eicosanoids (prostaglandins, leukotrienes, thromboxanes), resolvins and neuroprotectins. Lipid mediators produced by EPA and DHA (LC n-3 PUFA; mainly found in oily fish) are considered as inflammation-resolving, and thus, fish oil has been characterised as antiinflammatory. Recommendations for EPA plus DHA intake from oily fish vary between 250-450 mg/day. Dietary reference values for fat vary between nutrition bodies, but mainly agree on a low total and saturated fat intake. The existing literature supports the protective effects of LC n-3 PUFA (as opposed to n-6 PUFA and saturated fat) in maternal and offspring health, cardiovascular health, insulin sensitivity, the metabolic syndrome, cancer, critically ill patients, and immune system disorders.Conclusion. Fatty acids are involved in multiple pathways and play a major role in health. Further investigation and a nutrigenomics approach to the effects of these biocompounds on health and disease development are imperative and highlight the importance of environmental modifications on disease outcome.humans. Thus, these FA may be characterised as conditionally essential depending on EFA availability. Genetic variation in human desaturase genes affects FA metabolism, plasma lipid profiles, and risk of disease development [5][6][7] . Recommendations for minimum dietary intake of EPA plus DHA vary between 250-450 mg/day 8 , especially for pregnant women and those of reproductive age. Rich sources of LC n-3 PUFA are fish oils and the flesh of oily fish, whereas non-oily (white) fish contain them but in lower amounts.Long-chain PUFA with 18-20 carbon atoms, including EPA and AA, are precursors of eicosanoids (prostaglandins, leucotrienes and thromboxanes), which have a broad scale of regulatory, autocrine and paracrine effects. Long-chain PUFA with 20 and 22 carbon atoms are precursors of autacoids -resolvins (resolution phase interaction products), lipoxins and neuroprotectins 9 . FA are also ligands of nuclear receptors which take part in the subcellular control of metabolic pathways. Covalent modification of proteins by FA acylation enables their incorporation into membranes. Hydroxy FA are activators of some nuclear factors and are responsible for the expression of proinflammatory cytokines (interleukin (IL)-1,
Adipose tissue has a key role in the development of metabolic syndrome (MS), which includes obesity, type 2 diabetes, dyslipidaemia, hypertension and other disorders. Systemic insulin resistance represents a major factor contributing to the development of MS in obesity. The resistance is precipitated by impaired adipose tissue glucose and lipid metabolism, linked to a low-grade inflammation of adipose tissue and secretion of pro-inflammatory adipokines. Development of MS could be delayed by lifestyle modifications, while both dietary and pharmacological interventions are required for the successful therapy of MS. The n-3 long-chain (LC) PUFA, EPA and DHA, which are abundant in marine fish, act as hypolipidaemic factors, reduce cardiac events and decrease the progression of atherosclerosis. Thus, n-3 LC PUFA represent healthy constituents of diets for patients with MS. In rodents n-3 LC PUFA prevent the development of obesity and impaired glucose tolerance. The effects of n-3 LC PUFA are mediated transcriptionally by AMP-activated protein kinase and by other mechanisms. n-3 LC PUFA activate a metabolic switch toward lipid catabolism and suppression of lipogenesis, i.e. in the liver, adipose tissue and small intestine. This metabolic switch improves dyslipidaemia and reduces ectopic deposition of lipids, resulting in improved insulin signalling. Despite a relatively low accumulation of n-3 LC PUFA in adipose tissue lipids, adipose tissue is specifically linked to the beneficial effects of n-3 LC PUFA, as indicated by (1) the prevention of adipose tissue hyperplasia and hypertrophy, (2) the induction of mitochondrial biogenesis in adipocytes, (3) the induction of adiponectin and (4) the amelioration of adipose tissue inflammation by n-3 LC PUFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.