A significant amount of waste is generated in the food industry, which is both an environmental and an economic problem. The recycling of this waste has become an important area of research. The processing of grapes produces 20–30% of the waste in the form of grape pomace and stalks. This article assesses the fuel values of these materials before and after torrefaction. The input materials were grape pomace samples from the varieties Riesling (Vitis vinifera “Welschriesling”) and Cabernet Sauvignon (Vitis vinifera “Cabernet Sauvignon”) from the South Moravia region and stalks from the variety Welschriesling. The torrefaction process was performed using a LECO TGA 701 thermogravimetric analyzer under nitrogen atmosphere at set temperatures of 225 °C, 250 °C, and 275 °C. The residence time was 30 min. Elemental analysis, calorific value, and gross calorific value were determined for all samples. The analyses show a positive effect of torrefaction on fuel properties in the samples. Between temperatures 250 °C and 275 °C, the carbon content increased by 4.29 wt.%, and the calorific value increased with the increase in temperature reaching a value of 25.84 MJ·kg−1 at a peak temperature of 275 °C in the sample grape pomace from blue grapevine.
The paper investigated the torrefaction of cones from three tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), and European larch (Larix decidua Mill.). The objective was to determine the effects of torrefaction temperature on the properties of cones with a view to their further use as a renewable energy source. Torrefaction was conducted at 200, 235, 275, and 320 °C for 60 min under an inert gas atmosphere. Elemental composition, ash content, and lower heating value (LHV) were measured for the original and torrefied samples. Torrefaction performance was evaluated using formulas for solid yield, higher heating value (HHV), HHV enhancement factor, as well as energy yield. Scanning electron microscopy (SEM) was used to assess elemental composition and structural changes at the surface of the torrefied material. For all the studied conifer species, the higher the torrefaction temperature, the greater the carbon and ash content and the higher the LHV (a maximum of 27.6 MJ·kg−1 was recorded for spruce and larch cones torrefied at 320 °C). SEM images showed that an increase in process temperature from 200 to 320 °C led to partial decomposition of the scale surface as a result of lignin degradation. Cone scales from all tree species revealed C, O, N, Mg, K, and Si at the surface (except for pine scales, which did not contain Si). Furthermore, the higher the temperature, the higher the enhancement factor and the lower the energy yield of the torrefied biomass. Under the experimental conditions, spruce cones were characterized by the lowest weight loss, the highest HHV, and the highest energy yield, and so they are deemed the best raw material for torrefaction among the studied species.
The use of grape residues as a renewable energy source for combustion presents various problems. One of these is the excessive production of carbon monoxide and nitrogen oxides. Analyses and combustion tests were performed on white and red grape pomace as well as grape stems. To verify the possibility of a reduction in emissions, straw of Miscanthus sinensis was added to mixtures with red grape pomace. Emission concentrations of carbon monoxide and nitrogen oxides were determined on a grate combustion device with a nominal thermal output of 8 kW under steady-state conditions. In addition to these emission concentrations, the excess air factor and the flue gas temperature were monitored. The results show a high energy content in grape residues. In red grape pomace, the gross calorific value of dry matter reached 22.17 MJ kg−1. Unfavourable properties included high ash and nitrogen contents. During combustion tests on all types of grape residue, the emission concentrations of carbon monoxide were above the legal limit for the combustion of solid fuels. The addition of Miscanthus straw improved the behaviour during combustion. The maximum content of grape pomace in the mixture capable of meeting legislative emission requirements was 50% wt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.