Wireless control of modular multilevel converter (MMC) submodules can benefit from different points of view, such as lower converter cost and shorter installation time. In return for the advantages, the stochastic performance of wireless communication networks necessitates an advanced converter control system immune to the losses and delays of the wirelessly transmitted data. This paper proposes an advancement to the distributed control of MMCs to utilize in wireless submodule control. Using the proposed method, the operation of the MMC continues smoothly and uninterruptedly during wireless communication errors. The previously proposed submodule wireless control concept relies on implementing the modulation and individual submodule-capacitor-voltage control in the submodules using the insertion indices transmitted from a central controller. This paper takes the concept as a basis and introduces to synthesize the indices autonomously in the submodules during the communication errors. This new approach allows the MMC continue its operation when one, some, or all submodules suffer from communication errors for a limited time. The proposal is validated experimentally on a laboratory-scale MMC.
This paper analyzes a single-machine scheduling problem with family setup times both from an optimization and a cost allocation perspective. In a so-called family sequencing situation jobs are processed on a single machine, there is an initial processing order on the jobs, and every job within a family has an identical cost function that depends linearly on its completion time. Moreover, a job does not require a setup when preceded by another job from the same family while a family specific setup time is required when a job follows a member of some other family.Explicitly taking into account admissibility restrictions due to the presence of the initial order, we show that for any subgroup of jobs there is an optimal order, such that all jobs of the same family are processed consecutively. To analyze the allocation problem of the maximal cost savings of the whole group of jobs, we define and analyze a so-called corresponding cooperative family sequencing game which explicitly takes into account the maximal cost savings for any coalition of jobs. Using nonstandard techniques we prove that each family sequencing game has a non-empty core by showing that a particular marginal vector belongs to the core. Finally, we specifically analyze the case in which the initial order is family ordered.
The wireless control of modular multilevel converter (MMC) submodules might offer advantages for MMCs with a high number of submodules. However, the control system should tolerate the stochastic nature of the wireless communication, continue the operation flawlessly or, at least, avoid overcurrents, overvoltages, and component failures. The previously proposed control methods enabled to control the submodules wirelessly with consecutive communication errors up to hundreds of control cycles. The submodule control method in this paper facilitates the MMC to safely overcome communication errors that last longer and when the MMC experiences significant electrical disturbances during the errors. The submodules are proposed to operate autonomously by implementing a replica of the central controller in the submodules and drive the replicas based on the local variables and the previously received data. The simulation and experimental results verify the proposed control method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.