Crop monitoring is a very important area of precision agriculture and smart farming. Through an accurate monitoring, it is possible to more efficiently manage the irrigation, fertilization, and pest control. In this study, we propose aerial thermal image calibration method and thermal image processing techniques to analyze the water stress level of fruit trees under different irrigation conditions. The calibration was performed using Gaussian process regression, and it was demonstrated as an appropriate regression method because it satisfied all requirements including the residuals’ normality, independence, and homoscedasticity. In addition, an appropriate image processing technique was necessary to selectively extract only the canopy temperature from the aerial thermal images, while excluding irrelevant elements such as the soil and other objects. For the image processing techniques, three methods (Gaussian mixture model, Otsu binarization algorithm, and Otsu binarization algorithm after Gaussian blurring) were employed. The Gaussian mixture model provided the highest accuracy and stable results for the extraction of the canopy temperature. After the aerial thermal images were subjected to calibration and image processing, the degree above nonstressed canopy (DANS) water stress index was calculated for the fruit trees under different water supply conditions. The distribution of the DANS water stress index was similar to the distribution of the canopy temperature and inversely proportional to the amount of supplied water content. Therefore, we expect that the DANS water stress index, calculated using the calibration and image processing techniques proposed in this study, can be a reliable measure for the estimation of the water stress of crops for the application of aerial infrared techniques to remote sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.