Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
Motivated by recent work on Hall viscosity, we derive from first principles the Kubo formulas for the stress-stress response function at zero wavevector that can be used to define the full complex frequency-dependent viscosity tensor, both with and without a uniform magnetic field. The formulas in the existing literature are frequently incomplete, incorrect, or lack a derivation; in particular, Hall viscosity is overlooked. Our approach begins from the response to a uniform external strain field, which is an active time-dependent coordinate transformation in d space dimensions. These transformations form the group GL(d, R) of invertible matrices, and the infinitesimal generators are called strain generators. These enable us to express the Kubo formula in different ways, related by Ward identities; some of these make contact with the adiabatic transport approach. The importance of retaining contact terms, analogous to the diamagnetic term in the familiar Kubo formula for conductivity, is emphasized. For Galilean-invariant systems, we derive a relation between the stress response tensor and the conductivity tensor that is valid at all frequencies and in both the presence and absence of a magnetic field. In the presence of a magnetic field and at low frequency, this yields a relation between the Hall viscosity, the q 2 part of the Hall conductivity, the inverse compressibility (suitably defined), and the diverging part of the shear viscosity (if any); this relation generalizes a result found recently by others. We show that the correct value of the Hall viscosity at zero frequency can be obtained (at least in the absence of low-frequency bulk and shear viscosity) by assuming that there is an orbital spin per particle that couples to a perturbing electromagnetic field as a magnetization per particle. We study several examples as checks on our formulation. We also present formulas for the stress response that directly generalize the Berry (adiabatic) curvature expressions for zero-frequency Hall conductivity or viscosity to the full tensors at all frequencies.
A new section of databases and programs devoted to double crystallographic groups (point and space groups) has been implemented in the Bilbao Crystallographic Server (http://www.cryst.ehu.es). The double crystallographic groups are required in the study of physical systems whose Hamiltonian includes spin-dependent terms. In the symmetry analysis of such systems, instead of the irreducible representations of the space groups, it is necessary to consider the single- and double-valued irreducible representations of the double space groups. The new section includes databases of symmetry operations (DGENPOS) and of irreducible representations of the double (point and space) groups (REPRESENTATIONS DPG and REPRESENTATIONS DSG). The tool DCOMPREL provides compatibility relations between the irreducible representations of double space groups at different k vectors of the Brillouin zone when there is a group-subgroup relation between the corresponding little groups. The program DSITESYM implements the so-called site-symmetry approach, which establishes symmetry relations between localized and extended crystal states, using representations of the double groups. As an application of this approach, the program BANDREP calculates the band representations and the elementary band representations induced from any Wyckoff position of any of the 230 double space groups, giving information about the properties of these bands. Recently, the results of BANDREP have been extensively applied in the description of and the search for topological insulators
Markovian reservoir engineering, in which time evolution of a quantum system is governed by a Lindblad master equation, is a powerful technique in studies of quantum phases of matter and quantum information. It can be used to drive a quantum system to a desired (unique) steady state, which can be an exotic phase of matter difficult to stabilize in nature. It can also be used to drive a system to a unitarily evolving subspace, which can be used to store, protect, and process quantum information. In this paper, we derive a formula for the map corresponding to asymptotic (infinite-time) Lindbladian evolution and use it to study several important features of the unique state and subspace cases. We quantify how subspaces retain information about initial states and show how to use Lindbladians to simulate any quantum channels. We show that the quantum information in all subspaces can be successfully manipulated by small Hamiltonian perturbations, jump operator perturbations, or adiabatic deformations. We provide a Lindblad-induced notion of distance between adiabatically connected subspaces. We derive a Kubo formula governing linear response of subspaces to time-dependent Hamiltonian perturbations and determine cases in which this formula reduces to a Hamiltonian-based Kubo formula. As an application, we show that (for gapped systems) the zerofrequency Hall conductivity is unaffected by many types of Markovian dissipation. Finally, we show that the energy scale governing leakage out of the subspaces, resulting from either Hamiltonian or jump-operator perturbations or corrections to adiabatic evolution, is different from the conventional Lindbladian dissipative gap and, in certain cases, is equivalent to the excitation gap of a related Hamiltonian. DOI: 10.1103/PhysRevX.6.041031 Subject Areas: Condensed Matter Physics, Quantum Information, Statistical Physics I. MOTIVATION AND OUTLINEConsider coupling a quantum mechanical system to a Markovian reservoir which evolves initial states of the system into multiple nonequilibrium (i.e., nonthermal) asymptotic states in the limit of infinite time. After tracing out the degrees of freedom of the reservoir, the time evolution of the system is governed by a Lindbladian L [1,2] (see also ), and its various asymptotic states ρ ∞ are elements of an asymptotic subspace AsðHÞ-a subspace of OpðHÞ, the space of operators on the system Hilbert space H. The asymptotic subspace attracts all initial states ρ in ∈ OpðHÞ, is free from the decoherence effects of L, and any remaining time evolution within AsðHÞ is exclusively unitary. If AsðHÞ has no time evolution, all ρ ∞ are stationary or steady. This work provides a thorough investigation into the response and geometrical properties of the various asymptotic subspaces.On one hand, AsðHÞ that support quantum information [7][8][9][10] are promising candidates for storing, preserving, and manipulating such information, particularly when their states can be engineered to possess favorable features (e.g., topological protection [11][12][13])....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.