Similarly to the system Hamiltonian, a subsystem's reduced density matrix is composed of blocks characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for extracting the contribution of individual charge sectors to the subsystem's entanglement measures within the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet Riemann surface. Specializing to the case of 1+1D conformal field theory, we obtain general exact results for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total entanglement entropy, which scales as lnL, is composed of sqrt[lnL] contributions of individual subsystem charge sectors for interacting fermion chains, or even O(L^{0}) contributions when total spin conservation is also accounted for. We also explain how measurements of the contribution to the entanglement from separate charge sectors can be performed experimentally with existing techniques.
Motivated by recent work on Hall viscosity, we derive from first principles the Kubo formulas for the stress-stress response function at zero wavevector that can be used to define the full complex frequency-dependent viscosity tensor, both with and without a uniform magnetic field. The formulas in the existing literature are frequently incomplete, incorrect, or lack a derivation; in particular, Hall viscosity is overlooked. Our approach begins from the response to a uniform external strain field, which is an active time-dependent coordinate transformation in d space dimensions. These transformations form the group GL(d, R) of invertible matrices, and the infinitesimal generators are called strain generators. These enable us to express the Kubo formula in different ways, related by Ward identities; some of these make contact with the adiabatic transport approach. The importance of retaining contact terms, analogous to the diamagnetic term in the familiar Kubo formula for conductivity, is emphasized. For Galilean-invariant systems, we derive a relation between the stress response tensor and the conductivity tensor that is valid at all frequencies and in both the presence and absence of a magnetic field. In the presence of a magnetic field and at low frequency, this yields a relation between the Hall viscosity, the q 2 part of the Hall conductivity, the inverse compressibility (suitably defined), and the diverging part of the shear viscosity (if any); this relation generalizes a result found recently by others. We show that the correct value of the Hall viscosity at zero frequency can be obtained (at least in the absence of low-frequency bulk and shear viscosity) by assuming that there is an orbital spin per particle that couples to a perturbing electromagnetic field as a magnetization per particle. We study several examples as checks on our formulation. We also present formulas for the stress response that directly generalize the Berry (adiabatic) curvature expressions for zero-frequency Hall conductivity or viscosity to the full tensors at all frequencies.
We study the influence of electron puddles created by doping of a 2D topological insulator on its helical edge conductance. A single puddle is modeled by a quantum dot tunnel-coupled to the helical edge. It may lead to significant inelastic backscattering within the edge because of the long electron dwelling time in the dot. We find the resulting correction to the perfect edge conductance. Generalizing to multiple puddles, we assess the dependence of the helical edge resistance on temperature and doping level, and compare it with recent experimental data.
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystem's reduced density matrix, each sector corresponding to a possible value of the conserved quantity. Recent studies have discussed the basic properties of these symmetry-resolved contributions, and calculated them using conformal field theory and numerical methods. In this work we employ the generalized Fisher-Hartwig conjecture to obtain exact results for the characteristic function of the symmetry-resolved entanglement ("flux-resolved entanglement") for certain 1D spin chains, or, equivalently, the 1D fermionic tight binding and the Kitaev chain models. These results are true up to corrections of order o L −1 where L is the subsystem size. We confirm that this calculation is in good agreement with numerical results. For the gapless tight binding chain we report an intriguing periodic structure of the characteristic functions, which nicely extends the structure predicted by conformal field theory. For the Kitaev chain in the topological phase we demonstrate the degeneracy between the even and odd fermion parity sectors of the entanglement spectrum due to virtual Majoranas at the entanglement cut. We also employ the Widom conjecture to obtain the leading behavior of the symmetry-resolved entanglement entropy in higher dimensions for an ungapped free Fermi gas in its ground state.
In the presence of symmetry, entanglement measures of quantum many-body states can be decomposed into contributions arising from distinct symmetry sectors. Here we investigate the decomposability of negativity, a measure of entanglement between two parts of a generally open system in a mixed state. While the entanglement entropy of a subsystem within a closed system can be resolved according to its total preserved charge, we find that negativity of two subsystems may be decomposed into contributions associated with their charge imbalance. We show that this chargeimbalance decomposition of the negativity may be measured by employing existing techniques based on creation and manipulation of many-body twin or triple states in cold atomic setups. Next, using a geometrical construction in terms of an Aharonov-Bohm-like flux inserted in a Riemann geometry, we compute this decomposed negativity in critical one-dimensional systems described by conformal field theory. We show that it shares the same distribution as the charge-imbalance between the two subsystems. We numerically confirm our field theory results via an exact calculations for noninteracting particles based on a double-gaussian representation of the partially transposed density matrix.arXiv:1804.00632v2 [cond-mat.stat-mech]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.