Now that the genes controlling embryonic patterning have been identified in several model organisms, long-standing questions concerning the evolution of developmental systems are open to investigation. Examination of the expression of even-skipped in a variety of insects reveals that Insect germ-type designations apparently do not reflect the variations in the mechanisms of segmentation evident throughout insect phylogeny.
Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms for how serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggests a developmental window during which altered serotonin levels permanently impact circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance.
Serotonin signaling plays a key role in the regulation of development, mood and behavior. Drosophila is well suited for the study of the basic mechanisms of serotonergic signaling, but the small size of its nervous system has previously precluded the direct measurements of neurotransmitters. This study demonstrates the first real-time measurements of changes in extracellular monoamine concentrations in a single larval Drosophila ventral nerve cord. Channelrhodopsin2-mediated, neuronal type-specific stimulation is used to elicit endogenous serotonin release, which is detected using fast-scan cyclic voltammetry at an implanted microelectrode. Release is decreased when serotonin synthesis or packaging are pharmacologically inhibited, confirming that the detected substance is serotonin. Similar to tetanus-evoked serotonin release in mammals, evoked serotonin concentrations are 280 -640 nM in the fly, depending on the stimulation length. Extracellular serotonin signaling is prolonged after administering cocaine or fluoxetine, showing that transport regulates the clearance of serotonin from the extracellular space. When ChR2 is targeted to dopaminergic neurons, dopamine release is measured demonstrating that this method is broadly applicable to other neurotransmitter systems. This study shows that the dynamics of serotonin release and reuptake in Drosophila are analogous to those in mammals, making this simple organism more useful for the study of the basic physiological mechanisms of serotonergic signaling.
Spectacular examples of cooperative behavior emerge among a variety of animals and may serve critical roles in fitness [1, 2]. However, the rules governing such behavior have been difficult to elucidate [2]. Drosophila larvae are known to socially aggregate [3, 4] and use vision, mechanosensation, and gustation to recognize each other [5-8]. We describe here a model experimental system of cooperative behavior involving Drosophila larvae. While foraging in liquid food, larvae are observed to align themselves and coordinate their movements in order to drag a common air cavity and dig deeper. Large-scale cooperation is required to maintain contiguous air contact across the posterior breathing spiracles. On the basis of a directed genetic screen we find that vision plays a key role in cluster dynamics. Our experiments show that blind larvae form fewer clusters and dig less efficiently than wild-type and that socially isolated larvae behave as if they were blind. Furthermore, we observed that blind and socially isolated larvae do not integrate effectively into wild-type clusters. Behavioral data indicate that vision and social experience are required to coordinate precise movements between pairs of larvae, therefore increasing the degree of cooperativity within a cluster. Hence, we hypothesize that vision and social experience allow Drosophila larvae to assemble cooperative digging groups leading to more effective feeding and potential evasion of predators. Most importantly, these results indicate that control over membership of such a cooperative group can be regulated.
Drosophila melanogaster, the fruit fly, is a commonly used model organism because of its homology to mammals and facile genetic manipulations. However, the size of the nervous system is very small. We report a method to evoke and detect rapid changes in extracellular dopamine in a single nerve cord isolated from a Drosophila larva. Flies were genetically modified to express Channelrhodopsin-2, a blue-light activated cation channel, in only dopaminergic neurons. Extracellular dopamine changes were measured with fast-scan cyclic voltammetry at an implanted carbon-fiber microelectrode. Seven-second stimulations with blue light result in an average peak dopamine concentration of 810 ± 60 nM, similar to electrically-stimulated release in mammals. Stimulations repeated at 15-minute intervals are stable for 65 minutes, allowing pharmacological experiments in the same sample. Peak duration is extended after cocaine or nisoxetine, inhibitors of the dopamine transporter (DAT). Release was reduced upon exposure to reserpine, which inhibits vesicular packaging. Chronic administration of NSD-1015, a dopamine synthesis inhibitor, decreased dopamine release and inhibited pupation, showing a link between neurotransmission and physiology. This is the first method to measure endogenous dopamine in an intact larval Drosophila nervous system and will allow studies of genetic and pharmacological manipulations of dopamine release and uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.