The observation of radiation-induced bystander responses, in which cells respond to their neighbors being irradiated, has important implications for understanding mechanisms of radiation action particularly after low-dose exposure. Much of this questions the current dogma of direct DNA damage driving response in irradiated systems. In this study, we have used a charged-particle microbeam to target individual helium ions ( 3 He 2؉ ) to individual cells within a population of radioresistant glioma cells cultured alone or in coculture with primary human fibroblasts. We found that even when a single cell within the glioma population was precisely traversed through its cytoplasm with one 3 He 2؉ ion, bystander responses were induced in the neighboring nonirradiated glioma or fibroblasts so that the yield of micronuclei was increased by 36% for the glioma population and 78% for the bystander fibroblast population. Importantly, the yield of bystander-induced micronuclei was independent of whether the cytoplasm or nucleus of a cell was targeted. The bystander responses were fully eliminated when the populations were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide or filipin, which scavenge nitric oxide (NO) and disrupt membrane rafts, respectively. By using the probe 4-amino-5-methylamino-2,7-difluorofluorescein, it was found that the NO level in the glioma population was increased by 15% after 1 or 10 cytoplasmic traversals, and this NO production was inhibited by filipin. This finding shows that direct DNA damage is not required for switching on of important cell-signaling mechanisms after lowdose irradiation and that, under these conditions, the whole cell should be considered a sensor of radiation exposure.
mantle (8). The water decreases the melting temperature, resulting in partial melting. Some high-pressure partitioning experiments suggest that, when partial melting occurs in subducted crustal materials, hollandite can preferentially incorporate several incompatible elements (K, Pb, Sr, light rare earth elements, and so forth) but is not likely to be a host for uranium and heavy rare earth elements, relative to the coexisting melt (9). Therefore, the stability of hollandite will strongly influence trace element geochemistry of magmas produced in the deep mantle as well as alkali transport processes in the transition zone and the lower mantle.Detailed studies of shocked meteorites may provide further evidence for dense minerals stable in the deep mantle. Other alkali-host minerals such as calcium ferrite-type NaA1Si04 and a related structural phase (1, 10) may be found in shocked meteorites. Together with comprehensive experimental studies on the melting relations and trace element partitioning between the alkali-host minerals, silicate melt, and fluid at the pressuretemperature conditions of the transition zone and the lower mantle, they will shed light on the behavior of alkali elements in the deep mantle and on crust formation processes. A Sting in the Tail ofing counterparts of ' OH (principally the hydrated electron, e,;;) are relatively ineffective, especially at inducmg DNA strand breaks.
Although conclusive evidence has been obtained for the presence of radiation-induced bystander effects, the mechanisms that trigger and regulate these processes are still largely unknown. The bystander effect may play a critical role in determining the biological effectiveness of low-dose exposures, but questions on how to incorporate it into current models and extrapolate the risks of radiation-induced carcinogenesis are still open. The Gray Cancer Institute soft X-ray microbeam has been used to investigate the dose-response relationship of the bystander effect below 0.5 Gy. The survival response of V79 cells was assessed after the irradiation of a single cell within a population with a submicrometer-size beam of carbon K X rays (278 eV). Above 0.3 Gy, the measured bystander cell killing was in agreement with previously published data; however, a significant increase in the scatter of the data was observed in the low-dose region (<0.3 Gy). The data distribution observed indicates a binary behavior for triggering of the bystander response. According to our hypothesis, the probability of triggering a bystander response increases approximately linearly with the dose delivered to the single selected cell, reaching 100% above about 0.3 Gy. The magnitude of the bystander effect, when triggered, is approximately constant with the dose and results in an overall approximately 10% reduction in survival in our system. This suggests that the event that triggers the emission of the bystander signal by the hit cell is an all-or-nothing process. Extrapolation of the data indicates that when a single fast electron traverses a V79 cell, there is a probability of approximately 0.3% that the cell will emit the bystander signal. The data presented in this paper have also been analyzed statistically to test the possibility that complex DNA double-strand breaks may be the initial critical event.
Radiation-induced bystander effects may play an important role in cancer risks associated with environmental, occupational and medical exposures and they may also present a therapeutic opportunity to modulate the efficacy of radiotherapy. However, the mechanisms underpinning these responses between tumor and normal cells are poorly understood. Using a microbeam, we investigated interactions between T98G malignant glioma cells and AG01522 normal fibroblasts by targeting cells through their nuclei in one population, then detecting cellular responses in the other co-cultured non-irradiated population. It was found that when a fraction of cells was individually irradiated with exactly 1 or 5 helium particles ( 3 He 2þ ), the yield of micronuclei (MN) in the non-irradiated population was significantly increased. This increase was not related to the fraction of cells targeted or the number of particles delivered to those cells. Even when one cell was targeted with a single 3 He 2þ , the induction of MN in the bystander non-irradiated population could be increased by 79% for AG01522 and 28% for T98G. Furthermore, studies showed that nitric oxide (NO) and reactive oxygen species (ROS) were involved in these bystander responses. Following nuclear irradiation in only 1% of cells, the NO level in the T98G population was increased by 31% and the ROS level in the AG0 population was increased by 18%. Treatment of cultures with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO), an NO scavenger, abolished the bystander MN induction in nonirradiated AG01522 cells but only partially in non-irradiated T98G cells, and this could be eliminated by treatment with either DMSO or antioxidants. Our findings indicate that differential mechanisms involving NO and ROS signaling factors play a role in bystander responses generated from targeted T98G glioma and AG0 fibroblasts, respectively. These bystander interactions suggest that a mechanistic control of the bystander effect could be of benefit to radiotherapy. ' 2005 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.