Human activity recognition has become an important research topic within the field of pervasive computing, ambient assistive living (AAL), robotics, health-care monitoring, and many more. Techniques for recognizing simple and single activities are typical for now, but recognizing complex activities such as concurrent and interleaving activity is still a major challenging issue. In this paper, we propose a two-phase hybrid deep machine learning approach using bi-directional Long-Short Term Memory (BiLSTM) and Skip-Chain Conditional random field (SCCRF) to recognize the complex activity. BiLSTM is a sequential generative deep learning inherited from Recurrent Neural Network (RNN). SCCRFs is a distinctive feature of conditional random field (CRF) that can represent long term dependencies. In the first phase of the proposed approach, we recognized the concurrent activities using the BiLSTM technique, and in the second phase, SCCRF identifies the interleaved activity. Accuracy of the proposed framework against the counterpart state-of-art methods using the publicly available datasets in a smart home environment is analyzed. Our experiment’s result surpasses the previously proposed approaches with an average accuracy of more than 93%.
The emergence of advanced machine learning or deep learning techniques such as autoencoders and generative adversarial networks, can generate images known as deepfakes, which astonishingly resemble the realistic images. These deepfake images are hard to distinguish from the real images and are being used unethically against famous personalities such as politicians, celebrities, and social workers. Hence, we propose a method to detect these deepfake images using a light weighted convolutional neural network (CNN). Our research is conducted with Deep Fake Detection Challenge (DFDC) full and sample datasets, where we compare the performance of our proposed model with various state-of-the-art pretrained models such as VGG-19, Xception and Inception-ResNet-v2. Furthermore, we perform the experiments with various resolutions maintaining 1:1 and 9:16 aspect ratios, which have not been explored for DFDC datasets by any other groups to date. Thus, the proposed model can flexibly accommodate various resolutions and aspect ratios, without being constrained to a specific resolution or aspect ratio for any type of image classification problem. While most of the reported research is limited to sample or preview DFDC datasets only, we have also attempted the testing on full DFDC datasets and presented the results. Contemplating the fact that the detailed results and resource analysis for various scenarios are provided in this research, the proposed deepfake detection method is anticipated to pave new avenues for deepfake detection research, that engages with DFDC datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.