The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.
The phytotoxin coronatine and the plant growth regulator methyl jasmonate (MeJA) caused similar growth-inhibitory effects on Arabidopsis seedlings. To test whether these two compounds have similar action, 14 independent coi1 (coronatine-insensitive) mutants of Arabidopsis were selected. The mutants segregated as single recessive Mendelian markers, and all were alleles at the coi1 locus. All coi1 mutants were also insensitive to MeJA and were male sterile. Both coronatine and MeJA inhibited root growth, stimulated anthocyanin accumulation, and increased the level of two proteins of ~31 and ~29 kD detected in SDS-polyacrylamide gels of wild-type Arabidopsis but caused none of these effects in the coi1 mutant. Coronatine and MeJA also induced the systemic appearance of proteinase inhibitor activity in tomato. The male-sterile flowers of the coi1 mutant produced abnormal pollen and had reduced level of an ~31-kD protein, which was abundant in the wild-type flowers. A coronatine-producing strain of Pseudomonas syringae grew in leaves of wild-type Arabidopsis to a population more than 100 times greater than it reached in the coi1 mutant. We conclude that coronatine mimics the action of MeJA and that coi1 controls a step in MeJA perception/response and in flower development.
The Arabidopsis EDS1 and PAD4 genes encode lipaselike proteins that function in resistance (R) gene-mediated and basal plant disease resistance. Phenotypic analysis of eds1 and pad4 null mutants shows that EDS1 and PAD4 are required for resistance conditioned by the same spectrum of R genes but ful®l distinct roles within the defence pathway. EDS1 is essential for elaboration of the plant hypersensitive response, whereas EDS1 and PAD4 are both required for accumulation of the plant defence-potentiating molecule, salicylic acid. EDS1 is necessary for pathogen-induced PAD4 mRNA accumulation, whereas mutations in PAD4 or depletion of salicylic acid only partially compromise EDS1 expression. Yeast twohybrid analysis reveals that EDS1 can dimerize and interact with PAD4. However, EDS1 dimerization is mediated by different domains to those involved in EDS1±PAD4 association. Co-immunoprecipitation experiments show that EDS1 and PAD4 proteins interact in healthy and pathogen-challenged plant cells. We propose two functions for EDS1. The ®rst is required early in plant defence, independently of PAD4. The second recruits PAD4 in the ampli®cation of defences, possibly by direct EDS1±PAD4 association.
A major class of plant disease resistance (R) genes encodes leucine-rich-repeat proteins that possess a nucleotide binding site and amino-terminal similarity to the cytoplasmic domains of the Drosophila Toll and human IL-1 receptors. In Arabidopsis thaliana, EDS1 is indispensable for the function of these R genes. The EDS1 gene was cloned by targeted transposon tagging and found to encode a protein that has similarity in its amino-terminal portion to the catalytic site of eukaryotic lipases. Thus, hydrolase activity, possibly on a lipid-based substrate, is anticipated to be central to EDS1 function. The predicted EDS1 carboxyl terminus has no significant sequence homologies, although analysis of eight defective eds1 alleles reveals it to be essential for EDS1 function. Two plant defense pathways have been defined previously that depend on salicylic acid, a phenolic compound, or jasmonic acid, a lipid-derived molecule. We examined the expression of EDS1 mRNA and marker mRNAs (PR1 and PDF1.2, respectively) for these two pathways in wild-type and eds1 mutant plants after different challenges. The results suggest that EDS1 functions upstream of salicylic aciddependent PR1 mRNA accumulation and is not required for jasmonic acid-induced PDF1.2 mRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.