For the first time, the feasibility and long-term functionality of transcatheter-based homologous off-the-shelf tissue engineered heart valves are demonstrated in a relevant pre-clinical model. Such engineered heart valves may represent an interesting alternative to current prostheses because of their rapid cellular repopulation, tissue remodeling, and therewith self-repair capacity. The concept of homologous off-the-shelf tissue engineered heart valves may therefore substantially simplify previous tissue engineering concepts toward clinical translation.
Valvular heart disease is a major cause of morbidity and mortality worldwide. Current heart valve prostheses have considerable clinical limitations due to their artificial, nonliving nature without regenerative capacity. To overcome these limitations, heart valve tissue engineering (TE) aiming to develop living, native-like heart valves with self-repair, remodeling, and regeneration capacity has been suggested as next-generation technology. A major roadblock to clinically relevant, safe, and robust TE solutions has been the high complexity and variability inherent to bioengineering approaches that rely on cell-driven tissue remodeling. For heart valve TE, this has limited long-term performance in vivo because of uncontrolled tissue remodeling phenomena, such as valve leaflet shortening, which often translates into valve failure regardless of the bioengineering methodology used to develop the implant. We tested the hypothesis that integration of a computationally inspired heart valve design into our TE methodologies could guide tissue remodeling toward long-term functionality in tissue-engineered heart valves (TEHVs). In a clinically and regulatory relevant sheep model, TEHVs implanted as pulmonary valve replacements using minimally invasive techniques were monitored for 1 year via multimodal in vivo imaging and comprehensive tissue remodeling assessments. TEHVs exhibited good preserved long-term in vivo performance and remodeling comparable to native heart valves, as predicted by and consistent with computational modeling. TEHV failure could be predicted for nonphysiological pressure loading. Beyond previous studies, this work suggests the relevance of an integrated in silico, in vitro, and in vivo bioengineering approach as a basis for the safe and efficient clinical translation of TEHVs.
The evolution of minimally invasive implantation procedures and the in vivo remodeling potential of decellularized tissue-engineered heart valves require stents with growth capacity to make these techniques available for pediatric patients. By means of computational tools and 3D printing technology, this proof-ofconcept study demonstrates the design and manufacture of a polymer stent with a mechanical performance comparable to that of conventional nitinol stents used for heart valve implantation in animal trials. A commercially available 3D printing polymer was selected, and crush and crimping tests were conducted to validate the results predicted by the computational model. Finally, the degradability of the polymer was assessed via accelerated hydrolysis.
Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.