The evolution of minimally invasive implantation procedures and the in vivo remodeling potential of decellularized tissue-engineered heart valves require stents with growth capacity to make these techniques available for pediatric patients. By means of computational tools and 3D printing technology, this proof-ofconcept study demonstrates the design and manufacture of a polymer stent with a mechanical performance comparable to that of conventional nitinol stents used for heart valve implantation in animal trials. A commercially available 3D printing polymer was selected, and crush and crimping tests were conducted to validate the results predicted by the computational model. Finally, the degradability of the polymer was assessed via accelerated hydrolysis.
A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing.
Transcatheter heart valve replacement is an attractive and promising technique for congenital as well as acquired heart valve disease. In this procedure, the replacement valve is mounted in a stent that is expanded at the aimed valve position and fixated by clamping. However, for this technique to be appropriate for pediatric patients, the material properties of the host tissue need to be determined to design stents that can be optimized for this particular application. In this study we performed equibiaxial tensile tests on four adult ovine pulmonary artery walls and compared the outcomes with one pediatric pulmonary artery. Results show that the pediatric pulmonary artery was significantly thinner (1.06 ± 0.36 mm (mean ± SD)) than ovine tissue (2.85 ± 0.40 mm), considerably stiffer for strain values that exceed the physiological conditions (beyond 50% strain in the circumferential and 60% in the longitudinal direction), more anisotropic (with a significant difference in stiffness between the longitudinal and circumferential directions beyond 60% strain) and presented stronger non-linear stress-strain behavior at equivalent strains (beyond 26% strain) compared to ovine tissue. These discrepancies suggest that stents validated and optimized using the ovine pre-clinical model might not perform satisfactorily in pediatric patients. The material parameters derived from this study may be used to develop stent designs for both applications using computational models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.