Genome sequencing (GS) can identify novel diagnoses for patients who remain undiagnosed after routine diagnostic procedures. We tested whether GS is a better first-tier genetic diagnostic test than current standard of care (SOC) by assessing the technical and clinical validity of GS for patients with neurodevelopmental disorders (NDD). We performed both GS and exome sequencing in 150 consecutive NDD patient-parent trios. The primary outcome was diagnostic yield, calculated from disease-causing variants affecting exonic sequence of known NDD genes. GS (30%, n = 45) and SOC (28.7%, n = 43) had similar diagnostic yield. All 43 conclusive diagnoses obtained with SOC testing were also identified by GS. SOC, however, required integration of multiple test results to obtain these diagnoses. GS yielded two more conclusive diagnoses, and four more possible diagnoses than ES-based SOC (35 vs. 31). Interestingly, these six variants detected only by GS were copy number variants (CNVs). Our data demonstrate the technical and clinical validity of GS to serve as routine first-tier genetic test for patients with NDD. Although the additional diagnostic yield from GS is limited, GS comprehensively identified all variants in a single experiment, suggesting that GS constitutes a more efficient genetic diagnostic workflow.
Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation, including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we performed LRS around 15×–40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes and genomes. Systematic assessment of LRS coverage showed that ~35 Mb of the human reference genome was only accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35 Mb of the genome that was only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome variation.
De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160$ \times$164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.