A production process for ectoine has been developed, using Brevibacterium epidermis DSM20659 as the producer strain. First, the optimal conditions for intracellular synthesis of ectoine were determined. The size of the intracellular ectoine pool is shown to be dependent on the external salt concentration, type of carbon source, and yeast extract concentration. Under the optimized conditions of 1 M NaCl, 50 g/L monosodium glutamate, and 2.5 g/L yeast extract, a maximum concentration of intracellular ectoine of 0.9 g/L was obtained in shake flask cultures. After optimizing the batch fermentation parameters of temperature, pH, agitation, and aeration, the yield could be further increased by applying the fed-batch fermentation principle in 1.5- to 2-L fermentors. Glutamate and yeast extract were fed to the bacterial cells such that the total glutamate concentration in the broth remained constant. A total yield of 8 g ectoine/L fermentation broth was obtained with a productivity of 2 g ectoine/L/day. After the bacterial cells were harvested from the culture broth, the ectoine was recovered from them by a two-step extraction with water and ethanol. Crystallization of the product was obtained after concentration of the extract via evaporation under reduced pressure. After this downstream process, 55% of the ectoine produced in the fermentor could be crystallized in four fractions. The first fractions were of very high purity (98%). This production process can compete with other described production processes for ectoine in productivity and simplicity. Further advantages are the relatively low amounts of NaCl needed and the absence of hydroxyectoine, often a byproduct, in the final product.
As a halotolerant bacterial species, Brevibacterium epidermis DSM 20659 can grow at relatively high salinity, tolerating up to 2 M NaCl. It synthesizes ectoine and the intracellular content increases with the medium salinity, with a maximum of 0.14 g ectoine/g CDW at 1 M NaCl. Sugar-stressed cells do not synthesize ectoine. Ectoine synthesis is also affected by the presence of external osmolytes. Added betaine is taken up and completely replaced ectoine, while L-proline is only temporarily accumulated after which ectoine is synthesized. The strain can metabolize ectoine; L-glutamate is a better carbon source for ectoine synthesis than L-aspartate.
: Microbial fermentations are of major importance in the field of biotechnology. The range of applications is rather extensive, for example, the production of vaccines, recombinant proteins, and plasmids. During the past decades single-use bioreactors have become widely accepted in the biopharmaceutical industry. This acceptance is due to the several advantages these bioreactors offer, such as reduced operational and investment costs. Although this technology is attractive for microbial applications, its usage is rarely found. The main limitations are a relatively low oxygen transfer rate and cooling capacity. The aim of this study was to examine a stirred single-use bioreactor for its microbial suitability. Therefore, the important process engineering parameters volumetric mass transfer coefficient (k L a), mixing time, and the heat transfer coefficient were determined. Based on the k L a characteristics a mathematical model was established that was used with the other process engineering parameters to create a control space. For a further verification of the control space for microbial suitability, Escherichia coli and Pichia pastoris high cell density fermentations were carried out. The achieved cell density for the E. coli fermentation was OD600 = 175 (DCW = 60.8 g/L). For the P. pastoris cultivation a wet cell weight of 381 g/L was reached. The achieved cell densities were comparable to fermentations in stainless steel bioreactors. Furthermore, the expression of recombinant proteins with titers up to 9 g/L was guaranteed.
Brevibacterium epidermis DSM 20659 is a halotolerant Gram-positive bacterium, which can synthesize the osmolyte, ectoine, but prefers to take it up from its environment. The present study revealed that B. epidermis is equipped with at least one transport system for ectoine, with a maximal transport velocity of 15.7 ± 4.3 nmol/g CDW/min. The transport requires energy and is completely inhibited by the proton uncoupler CCCP. The ectoine uptake system is constitutively expressed at a basal level of activity and its activity is immediately 10-fold increased by hyper-osmotic stress. Initial uptake rates are not influenced by the intensity of the hyper-osmotic shock, but the duration of the increased activity of the uptake system could be directly related to the osmotic strength of the assay solution. Competition assays indicate that betaine, but not proline, is also transported by the ectoine uptake system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.