The pyramidal neuron is the principal cell type in the mammalian forebrain, but its function remains poorly understood. Using a detailed compartmental model of a hippocampal CA1 pyramidal cell, we recorded responses to complex stimuli consisting of dozens of high-frequency activated synapses distributed throughout the apical dendrites. We found the cell's firing rate could be predicted by a simple formula that maps the physical components of the cell onto those of an abstract two-layer "neural network." In the first layer, synaptic inputs drive independent sigmoidal subunits corresponding to the cell's several dozen long, thin terminal dendrites. The subunit outputs are then summed within the main trunk and cell body prior to final thresholding. We conclude that insofar as the neural code is mediated by average firing rate, a two-layer neural network may provide a useful abstraction for the computing function of the individual pyramidal neuron.
The thin basal and oblique dendrites of cortical pyramidal neurons receive most of the cells' synaptic input, but their integrative properties remain uncertain. Previous studies have most often reported global linear or sublinear summation. An alternative view, supported by biophysical modeling studies, holds that thin dendrites provide a layer of independent computational 'subunits' that sigmoidally modulate their inputs prior to global summation. To distinguish these possibilities, we combined confocal imaging and dual-site focal synaptic stimulation of identified thin dendrites in rat neocortical pyramidal neurons. We found that nearby inputs on the same branch summed sigmoidally, whereas widely separated inputs or inputs to different branches summed linearly. This strong spatial compartmentalization effect is incompatible with a global summation rule and provides the first experimental support for a two-layer "neural network" [The quotes are left in to refer to a standard architecture in the artificial neural network field] model of pyramidal neuron thin-branch integration. Our findings could have important implications for the computing and memory-related functions of cortical tissue.
We consider the combined effects of active dendrites and structural plasticity on the storage capacity of neural tissue. We compare capacity for two different modes of dendritic integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor, and (2) nonlinear, where each dendritic compartment functions as a separately thresholded neuron-like summing unit. We calculate much larger storage capacities for cells with nonlinear subunits and show that this capacity is accessible to a structural learning rule that combines random synapse formation with activity-dependent stabilization/elimination. In a departure from the common view that memories are encoded in the overall connection strengths between neurons, our results suggest that long-term information storage in neural tissue could reside primarily in the selective addressing of synaptic contacts onto dendritic subunits.
Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical 'wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.
The rules of synaptic integration in pyramidal cells remain obscure, in part due to conflicting interpretations of existing experimental data. To clarify issues, we developed a CA1 pyramidal cell model calibrated with a broad spectrum of in vitro data. Using simultaneous dendritic and somatic recordings and combining results for two different response measures (peak versus mean EPSP), two different stimulus formats (single shock versus 50 Hz trains), and two different spatial integration conditions (within versus between-branch summation), we found that the cell's subthreshold responses to paired inputs are best described as a sum of nonlinear subunit responses, where the subunits correspond to different dendritic branches. In addition to suggesting a new type of experiment and providing testable predictions, our model shows how conclusions regarding synaptic arithmetic can be influenced by an array of seemingly innocuous experimental design choices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.