The pathogenic Legionella bacteria are notorious for delivering numerous effector proteins into the host cell with the aim of disturbing and hijacking cellular processes for their benefit. Despite intensive studies, many effectors remain uncharacterized. Motivated by the richness of Legionella effector repertoires and their oftentimes atypical biochemistry, also by several known atypical Legionella effector kinases and pseudokinases discovered recently, we undertook an in silico survey and exploration of the pan-kinome of the Legionella genus, i.e., the union of the kinomes of individual species. In this study, we discovered 13 novel (pseudo)kinase families (all are potential effectors) with the use of non-standard bioinformatic approaches. Together with 16 known families, we present a catalog of effector and non-effector protein kinase-like families within Legionella, available at http://bioinfo.sggw.edu.pl/kintaro/. We analyze and discuss the likely functional roles of the novel predicted kinases. Notably, some of the kinase families are also present in other bacterial taxa, including other pathogens, often phylogenetically very distant from Legionella. This work highlights Nature’s ingeniousness in the pathogen–host arms race and offers a useful resource for the study of infection mechanisms.
The pathogenic Legionella bacteria are notorious for delivering numerous effector proteins into the host cell with the aim of disturbing and hijacking cellular processes for their benefit. Despite intensive studies, many effectors remain uncharacterized. Motivated by the richness of Legionella effector repertoires and their oftentimes atypical biochemistry, also by several known atypical Legionella effector kinases and pseudokinases, we undertook an in silico survey and exploration of the pan-kinome of the Legionella genus, i.e., the union of the kinomes of individual species. In this study, we discovered 13 novel (pseudo)kinase families (all are potential effectors) with the use of non-standard bioinformatic approaches. Together with 16 known families, we present a catalog of effector and non-effector protein kinase-like families within Legionella. We analyze and discuss the likely functional roles of the novel predicted kinases. Notably, some of the kinase families are also present in other bacterial taxa, including other pathogens, often phylogenetically very distant from Legionella. This work highlights Nature's ingeniousness in the pathogen–host arms race and offers a useful resource for the study of infection mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.