This study presents the first evaluation of new Toxoplasma gondii recombinant chimeric antigens containing three immunodominant regions of SAG2, GRA1, and one of two ROP1 fragments differing in length for the serodiagnosis of human toxoplasmosis. The recombinant chimeric antigens SAG2-GRA1-ROP1L (with large fragment of ROP1, 85–396 amino acid residues) and SAG2-GRA1-ROP1S (with a small fragment of ROP1, 85–250 amino acid residues) were obtained as fusion proteins containing His6-tags at both ends using an Escherichia coli expression system. The diagnostic utility of these chimeric antigens was determined using the enzyme-linked immunosorbent assay (ELISA) for the detection of specific anti-T. gondii immunoglobulin G (IgG). The IgG ELISA results obtained for the chimeric antigens were compared to those obtained for the use of Toxoplasma lysate antigen (TLA) and for a mixture of recombinant antigens containing rSAG2, rGRA1, and rROP1. The sensitivity of the IgG ELISA was similar for the SAG2-GRA1-ROP1L chimeric antigen (100 %), the mixture of three proteins (99.4 %) and the TLA (97.1 %), whereas the sensitivity of IgG ELISA with the SAG2-GRA1-ROP1S chimeric antigen was definitely lower, reaching 88.4 %. In conclusion, this study shows that SAG2-GRA1-ROP1L chimeric antigen can be useful for serodiagnosis of human toxoplasmosis with the use of the IgG ELISA assay. Therefore, the importance of proper selection of protein fragments for the construction of chimeric antigen with the highest reactivity in ELISA test is demonstrated.
This study presents an evaluation of four tetravalent recombinant chimeric proteins containing fragments of the
Toxoplasma gondii
antigens, SAG2, GRA1, ROP1 and AMA1, as potential replacements of a the soluble, whole-cell tachyzoite lysate (TLA) used in serological assays. Recombinant chimeric proteins (SAG2-GRA1-ROP1-AMA1N, AMA1N-SAG2-GRA1-ROP1, AMA1C-SAG2-GRA1-ROP1, and AMA1-SAG2-GRA1-ROP1) obtained by genetic engineering were tested for their reactivity with specific IgM and IgG antibodies from sera of experimentally infected mice and humans with
T
.
gondii
infection using an enzyme-linked immunosorbent assay (ELISA). In total 192 serum samples from patients with acquired
T
.
gondii
infection and 137 sera from seronegative individuals were examined. The reactivity of chimeric antigens with antibodies generated during
T
.
gondii
invasion was measured and compared to the results obtained in assays based on whole-cell
Toxoplasma
antigen. Chimeric proteins proved effective in differentiation between
T
.
gondii
-infected and uninfected individuals (100% sensitivity and specificity in the IgG ELISAs) which shows their potential usefulness as a replacements for TLA in standardized commercial tests for the serodiagnosis of toxoplasmosis. In addition, the chimeric proteins were tested for use in avidity determination. Obtained results were comparable to those of the corresponding commercial assays, suggesting the utility of these proteins for avidity assessment. Furthermore, this study demonstrated that the AMA1-SAG2-GRA1-ROP1 chimeric protein has the potential to distinguish specific antibodies from serum samples of individuals with the early and chronic phase of
T
.
gondii
infection.
This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N-and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis.
Toxoplasmosis is caused by an intracellular protozoan, Toxoplasma gondii, and is a parasitic disease that occurs in all warm-blooded animals, including humans. Toxoplasmosis is one of the most common parasitic diseases of animals and results in reproductive losses. Toxoplasmosis in humans is usually caused by eating raw or undercooked meat or consuming dairy products containing the parasite. Diagnosis of toxoplasmosis is currently based on serological assays using native antigens to detect specific anti-T. gondii antibodies. Due to the high price, the available commercial agglutination assays are not suited to test a large number of animal serum samples. The recent development of proteomics elucidated the antigenic structure of T. gondii and enabled the development of various recombinant antigens that can be used in new, cheaper, and more effective diagnostic tools. Continuous development of scientific disciplines, such as molecular biology and genetic engineering, allows for the production of new recombinant antigens and provides the basis for new diagnostic tests for the detection of anti-T. gondii antibodies in animal serum samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.