Digital elevation models (DEMs) play a significant role in geomorphological research. For geomorphologists reconstructing landform and drainage structure is frequently as important as elevation accuracy. Consequently, large-scale topographic maps (with contours, height points and watercourses) constitute excellent material for creating models (here called Topo-DEM) in fine resolution. The purpose of the conducted analyses was to assess the quality of Topo-DEM against freely-available global DEMs and then to compare it with a reference model derived from laser scanning (LiDAR-DEM). The analysis also involved derivative maps of geomorphometric parameters (local relief, slope, curvature, aspect) generated on the basis of Topo-DEM and LiDAR-DEM. Moreover, comparative classification of landforms was carried out. It was indicated that Topo-DEM is characterised by good elevation accuracy (RMSE <2 m) and reflects the topography of the analyzed area surprisingly well. Additionally, statistical and percentage metrics confirm that it is possible to generate a DEM with very good quality parameters on the basis of a large-scale topographic map (1:10,000): elevation differences between Topo-DEM and: 1) topographic map amounted from−1.68 to +2.06 m,MAEis 0.10 m, RMSE 0.16 m; 2) LiDAR-DEM (MAE 1.13 m, RMSE 1.69 m, SD 1.83 m); 3) GPS RTK measurements amounted from−3.6 to +3.01 m, MAE is 0.72 m, RMSE 0.97 m, SD 0.97 m. For an area of several dozen km2 Topo-DEM with 10×10 m resolution proved more efficient than detailed (1×1 m) LiDAR-DEM.
As an anthropogenic element of urban landscapes, coal heaps undergo changes due to both natural and anthropogenic factors. The aim of this study was to determine the common development of soil under the influence of vegetation succession against a background of environmental conditions. Vegetation changes and soil properties were analysed along a transect passing through a heap representing a particular succession stage. It was found that changes in the development of vegetation were closely related to the stages of coal-waste disposal, where the initial, transitional, and terminal stages were distinguished. The mean range of pH (H2O) values in the profiles was 6.75 ± 0.21 (profile 1), 7.2 ± 0.31 (profile 2), 6.3 ± 1.22 (profile 3), and 5.38 ± 0.42 (profile 4). The organic carbon (OC) content in all samples was high, ranging from 9.6% to 41.6%. The highest content of total nitrogen (Nt) was found (1.132%) in the algal crust and sub-horizon of the organic horizon (Olfh-0.751%) and humus (A-0.884) horizon in profile 3 under the initial forest. Notable contents of available elements were found in the algal shell for P (1588 mg∙kg−1) and Mg (670 mg∙kg−1). Soil organic matter content was mainly dominated by n-alkanes (n-C11-n-C34) and alkanoic acids (C5–C20). Phytene and Phytadiene were typical for the algal crust on the initial pedigree. The initiation of succession was determined by the variation in grain size of the waste dumped on the heap and the variation in relief and associated habitat mosaic. Algal crusts forming on clay–dust mineral and organic material accumulating in the depressions of the site and at the foot of the heap can be regarded as the focus of pedogenesis.
This chapter presents place of geomorphometry in contemporary geomorphology. The focus is on discussing digital elevation models (DEMs) that are the primary data source for the analysis. One has described the genesis and definition, main types, data sources and available free global DEMs. Then we focus on landform parameters, starting with primary morphometric parameters, then morphometric indices and at last examples of morphometric tools available in geographic information system (GIS) packages. The last section briefly discusses the landform classification systems which have arisen in recent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.