In many forested ecosystems, the architecture and functional ecology of certain tree species define forest structure and their species‐specific traits control ecosystem dynamics. Such foundation tree species are declining throughout the world due to introductions and outbreaks of pests and pathogens, selective removal of individual taxa, and over‐harvesting. Through a series of case studies, we show that the loss of foundation tree species changes the local environment on which a variety of other species depend; how this disrupts fundamental ecosystem processes, including rates of decomposition, nutrient fluxes, carbon sequestration, and energy flow; and dramatically alters the dynamics of associated aquatic ecosystems. Forests in which dynamics are controlled by one or a few foundation species appear to be dominated by a small number of strong interactions and may be highly susceptible to alternating between stable states following even small perturbations. The ongoing decline of many foundation species provides a set of important, albeit unfortunate, opportunities to develop the research tools, models, and metrics needed to identify foundation species, anticipate the cascade of immediate, short‐ and long‐term changes in ecosystem structure and function that will follow from their loss, and provide options for remedial conservation and management.
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock woolly adelgid, HWA, Adelges tsugae. We measured and quantified changes in microclimate; canopy mortality; canopy and shrub growth; understory species composition; and the cover and diversity in riparian forests dominated by eastern hemlock Tsuga canadensis over a period of seven years. Treatments manipulated hemlock mortality either through invasion (HWA infested stands) or girdling (GDL) hemlock trees.Mortality was rapid, with 50% hemlock tree mortality occurring after six years of invasion, in contrast to more than 50% mortality in two years following girdling. Although 50% of hemlock trees were still alive five years after infestation, leaf area lost was similar to that of girdled trees. As such, overall responses over time (changes in light transmittance, growth, soil moisture) were identical to girdled stands with 100% mortality. Our results showed different growth responses of the canopy species, shrubs and ground layer, with the latter being substantially influenced by presence of the evergreen shrub, rhododendron Rhododendron maximum. Although ground layer richness in the infested and girdled stands increased by threefold, they did not approach levels recorded in hardwood forests without rhododendron. Increased growth of co-occurring canopy trees occurred in the first few years following hemlock decline, with similar responses in both treatments. In contrast, growth of rhododendron continued to increase over time. By the end of the study it had a 2.6-fold higher growth rate than expected, likely taking advantage of increased light available during leaf-off periods of the deciduous species. Increased growth and dominance of rhododendron may be a major determinant of future responses in southern Appalachian ecosystems; however, our results suggest hemlock will be replaced by a mix of Acer, Betula, Fagus and Quercus canopy genera where establishment is not limited by rhododendron.
Canopy gaps in southern Appalachian mixed-Quercus forests were characterized to assess the impact ofthe 1985-1988 record drought on patterns oftree mortality in relation to topographic variables and changes in overstory composition. Using permanent transects, we sampled 68 canopy gaps within the Coweeta Basin. Among 1-5 yr old gaps, the most common gap type was the 1-yr-old single-tree snag, accounting for 49% of all gaps sampled; 65% of all gaps occurred within 2 yr of the drought peak. Gap area ranged from 40 to 850m 2 , averaged 239m 2 , with a median of 152m 2 • Analysis of 1988 color infrared (IR) aerial imagery yielded a gap formation rate of 0.8 gaps· ha -I · yr-1 in mixed-Quercus stands affecting 2.0% of the area in this forest type in 1988. The most frequent gap-forming species were Quercus coccinea, Q. rubra, and Q. velutina, respectively. Evidence suggests that moisture stress brought on by severe drought increases the susceptibility of Quercus species to the shoe-string fungus Armillaria mellea, which may result in significant shifts in canopy composition in these forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.