Background Humans have been influencing climate changes by burning fossil fuels, farming livestock, and cutting down rainforests, which has led to global temperature rise. This problem of global warming affects animals by causing heat stress, which negatively affects their health, biological functions, and reproduction. On the molecular level, it has been proved that heat stress changes the expression level of genes and therefore causes changes in proteome and metabolome. The importance of a microbiome in many studies showed that it is considered as individuals’ “second genome”. Physiological changes caused by heat stress may impact the microbiome composition. Results In this study, we identified fecal microbiota associated with heat stress that was quantified by three metrics – rectal temperature, drooling, and respiratory scores represented by their Estimated Breeding Values. We analyzed the microbiota from 136 fecal samples of Chinese Holstein cows through a 16S rRNA gene sequencing approach. Statistical modeling was performed using a negative binomial regression. The analysis revealed the total number of 24 genera and 12 phyla associated with heat stress metrics. Rhizobium and Pseudobutyrivibrio turned out to be the most significant genera, while Acidobacteria and Gemmatimonadetes were the most significant phyla. Phylogenetic analysis revealed that three heat stress indicators quantify different metabolic ways of animals’ reaction to heat stress. Other studies already identified that those genera had significantly increased abundance in mice exposed to stressor-induced changes. Conclusions This study provides insights into the analysis of microbiome composition in cattle using heat stress measured as a continuous variable. The bacteria highly associated with heat stress were highlighted and can be used as biomarkers in further microbiological studies.
Climate change affects animal physiology. In particular, rising ambient temperatures reduce animal vitality due to heat stress and this can be observed at various levels which included genome, transcriptome, and microbiome. In a previous study, microbiota highly associated with changes in cattle physiology, which included rectal temperature, drooling score and respiratory score, were identified under heat stress conditions. In the present study, genes differentially expressed between individuals were selected representing different additive genetic effects toward the heat stress response in cattle in their production condition. Moreover, a correlation network analysis was performed to identify interactions between the transcriptome and microbiome for 71 Chinese Holstein cows sequenced for mRNA from blood samples and for 16S rRNA genes from fecal samples. Bioinformatics analysis was performed comprising: i) clustering and classification of 16S rRNA sequence reads, ii) mapping cows' transcripts to the reference genome and their expression quantification, and iii) statistical analysis of both data types—including differential gene expression analysis and gene set enrichment analysis. A weighted co-expression network analysis was carried out to assess changes in the association between gene expression and microbiota abundance as well as to find hub genes/microbiota responsible for the regulation of gene expression under heat stress. Results showed 1,851 differentially expressed genes were found that were shared by three heat stress phenotypes. These genes were predominantly associated with the cytokine-cytokine receptor interaction pathway. The interaction analysis revealed three modules of genes and microbiota associated with rectal temperature with which two hubs of those modules were bacterial species, demonstrating the importance of the microbiome in the regulation of gene expression during heat stress. Genes and microbiota from the significant modules can be used as biomarkers of heat stress in cattle.
In Bos taurus the universality of the reference genome is biased towards genetic variation represented by only two related individuals representing the same Hereford breed. Therefore, results of genetic analyses based on this reference may not be reliable. The 1000 Bull Genomes resource allows for identification of breed-specific polymorphisms and for the construction of breed-specific reference genomes. Whole-genome sequences or 936 bulls allowed us to construct seven breed specific reference genomes of Bos taurus for Angus, Brown Swiss, Fleckvieh, Hereford, Jersey, Limousin and Simmental. In order to identify breed-specific variants all detected SNPs were filtered within-breed to satisfy criteria of the number of missing genotypes not higher than 7% and the alternative allele frequency equal to unity. The highest number of breed-specific SNPs was identified for Jersey (130,070) and the lowest—for the Simmental breed (197). Such breed-specific polymorphisms were annotated to coding regions overlapping with 78 genes in Angus, 140 in Brown Swiss, 132 in Fleckvieh, 100 in Hereford, 643 in Jersey, 10 in Limousin and no genes in Simmental. For most of the breeds, the majority of breed-specific variants from coding regions was synonymous. However, most of Fleckvieh-specific and Hereford-specific polymorphisms were missense mutations. Since the identified variants are characteristic for the analysed breeds, they form the basis of phenotypic differences observed between them, which result from different breeding programmes. Breed-specific reference genomes can enhance the accuracy of SNP driven inferences such as Genome-wide Association Studies or SNP genotype imputation.
A downside of next-generation sequencing technology is the high technical error rate. We built a tool, which uses array-based genotype information to classify next-generation sequencing–based SNPs into the correct and the incorrect calls. The deep learning algorithms were implemented via Keras. Several algorithms were tested: (i) the basic, naïve algorithm, (ii) the naïve algorithm modified by pre-imposing different weights on incorrect and correct SNP class in calculating the loss metric and (iii)–(v) the naïve algorithm modified by random re-sampling (with replacement) of the incorrect SNPs to match 30%/60%/100% of the number of correct SNPs. The training data set was composed of data from three bulls and consisted of 2,227,995 correct (97.94%) and 46,920 incorrect SNPs, while the validation data set consisted of data from one bull with 749,506 correct (98.05%) and 14,908 incorrect SNPs. The results showed that for a rare event classification problem, like incorrect SNP detection in NGS data, the most parsimonious naïve model and a model with the weighting of SNP classes provided the best results for the classification of the validation data set. Both classified 19% of truly incorrect SNPs as incorrect and 99% of truly correct SNPs as correct and resulted in the F1 score of 0.21 — the highest among the compared algorithms. We conclude the basic models were less adapted to the specificity of a training data set and thus resulted in better classification of the independent, validation data set, than the other tested models.
The new ARS-UCD1.2 assembly of the bovine genome has considerable improvements over the previous assembly and thus more accurate identification of patterns of genetic variation can be achieved with it. We explored differences in genetic variation between autosomes, the X chromosome, and the Y chromosome. In particular, variant densities, annotations, lengths (only for InDels), nucleotide divergence, and Tajima's D statistics between chromosomes were considered. Wholegenome DNA sequences of 217 individuals representing different cattle breeds were examined. The analysis included the alignment to the new reference genome and variant identification. 23,655,295 SNPs and 3,758,781 InDels were detected. In contrast to autosomes, both sex chromosomes had negative values of Tajima's D and lower nucleotide divergence. That implies a correlation between nucleotide diversity and recombination rate, which is obviously reduced for sex chromosomes. Moreover, the accumulation of nonsynonymous mutations on the Y chromosome could be associated with loss of recombination. Also, the relatively lower effective population size for sex chromosomes leads to a lower expected density of variants. DNA variation refers to differences in DNA sequence among individuals. Decreasing costs and reducing the time of whole-genome sequencing using the Next-Generation Sequencing (NGS) technology brings the opportunity to sequence many samples. The analysis of differences in DNA variation between autosomes and sex chromosomes plays an important role in understanding the evolution of chromosomes. In terms of studying variation, cattle is an interesting model, since for several generations it has undergone strong artificial selection toward increased milk (Holstein, Jersey, Jysk, Rd Dansk Malkerace anno 1970, Sortbroget Dansk Malkerace anno 1965) or beef (Danish Shorthorn) production. Besides, modern cattle is composed of breeds with distinct phenotypic characteristics. We used the new ARS-UCD 1.0.25 assembly that is the latest and the most accurate (less gaps) version of the cattle reference genome 1. However, this assembly, like the UMD3.1 2 , does not contain the bovine Y chromosome (BTY), so most analyzes ignored the Y chromosome. As a result it has been omitted from most studies, so that in livestock, only one association was identified between genetic variants from BTY and phenotypes (in particular in pigs, source AnimalQTdb www.anima lgeno me.org/cgi-bin/QTLdb /index ; Release 41). Recently the 1000 Bull Genomes Project 3 added the Y chromosome sequence from the Btau 5.0.1 to the ARS-UCD, creating the ARS-UCD1.2_Btau5.0.1Y assembly. Thereby has become feasible to use all nuclear bovine chromosomes. According to the ARS-UCD1.2_Btau5.0.1Y reference genome assembly, the bovine genome spans 2,759,153,975 bps with 30,278 genes (GeneBank assembly accession: GCA_002263795.2 and GCA_000003205.6) and consists of 29 autosomes and two sex chromosomes-X and Y (Table 1). The hemizygous Y chromosome in Bos taurus is short and contains only a few genes. In con...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.