Worldwide research groups are searching for anticancer compounds, many of them are organometalic complexes having platinum group metals as their active centers. Most commonly used cytostatics from this group are cisplatin, carboplatin and oxaliplatin. Cisplatin was used fot the first time in 1978, from this time many platinum derivatives were created. In this review we present biological properties and probable future clinical use of platinum, gold, silver, iridium and ruthenium derivatives. Gold derivative Auranofin has been studied extensively. Action of silver nanoparticles on different cell lines was analysed. Iridium isotopes are commonly used in brachyterapy. Ruthenium compound new anti-tumour metastasis inhibitor (NAMI-A) is used in managing lung cancer metastases. Electroporation of another ruthenium based compound KP1339 was also studied. Most of described complexes have antiproliferative and proapoptotic properties. Further studies need to be made. Nevertheless noble metal based chemotherapheutics and compounds seem to be an interesting direction of research.
Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane-the Spine Axial Presentation (SAP). Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing) and computer tomography (CT) (supine), the corresponding measurements cannot be directly compared.As a solution, a software creating Digital Reconstructed Radiographs (DRRs) from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC), using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point's coordinates ( x, y, z) were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.
IntroductionRecently the EOS imaging system (EOS Imaging, Paris, France) has provided advancements in 3D spinal modeling. Advancements include low radiation as well as fast and accurate reconstructed measurements of spinal parameters. There is a paucity of studies analyzing the reproducibility of the EOS Imaging System and the sterEOS software in the production of 3D spinal models for children with adolescent idiopathic scoliosis (AIS). Objectives The purposes of the study were 1) to determine the intraclass correlation (ICC) for both the inter-observer and intra-observer in the measurements of Cobb angles in AP view as well as the Cobb angles in the lateral view; 2) to assess the ICC for inter-and intra-observer in the axial vertebral rotation (AVR) of the apex vertebra; 3) to compare differences of spinal parameters between two examiners and two trials; 4) to determine how long a 3D reconstruction of the spine takes. Methods Bilateral x-ray images of fifteen patients (age: 6 -15 years old, 5 males, 10 females) were retrospectively selected. These EOS images were uploaded into the sterEOS computer program. Within the software, spinal and pelvic parameters were identified manually to construct a 3D model of the spine. The sterEOS software calculates the Cobb angles, angles of lordosis, angles of kyphosis, and the AVRs of the apex vertebra. The 3D modeling was performed independently by two examiners. Each examiner modeled each patient's spine in two spaced out trials. The ICC between inter-and intra-observers were calculated and compared statistically. Results and discussionBoth the inter-and intra-observers showed excellent reproducibility for the Cobb angles in the proximal segment (ICC: 0.72 -0.91), kyphosis (ICC: 0.85-0.92), and lordosis (ICC: 0.82 -0.95). No significant differences were found between angle differences (0.35°to 2.4°). In contrast to the traditional radiography, the sterEOS provides a better high quality view within the sagittal plane. A moderate inter-observer ICC for the Cobb angle in the distal segment (ICC = 0.67) indicates the examiners have to carefully adjust the alignment and vertebrae in 3D rather than in 2D following the automatic computation from the EOS software. The interobserver ICC for the AVR in the lumbar region (0.80) is higher than the thoracic or thoracolumbar region (0.65), but with high differences of AVR (4.0°-6.3°). The average time that two examiners spent per subject ranged from 34.6 to 37.4 minutes. Conclusion and significance EOS provides significantly reliable and accurate spinal modeling in the measurement of children with AIS. Exposure to less radiation as compared to other radiographic modality allows EOS to offer acceptable quality view of the spine in the sagittal and transversal plane. sagittal balance and predictive equations to determine lumbopelvic compensatory patterns (LPCP). These equations are used to guide surgical decision making and technique selection. Although other lumbopelvic compensation equations are available, these have not been compared wi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.