There are discrepancies concerning the time frame for biodegradation of different commercially available foils labeled as biodegradable; thus, it is essential to provide information about their biodegradability in the context of their end of life in waste management. Therefore, one-year mesophilic (37 °C) anaerobic degradation tests of two bio-based foils (based on starch (FS), polylactic acid (FPLA)) and oxo-degradable material (FOXO) were conducted in an OxiTop system. Biodegradation was investigated by measuring biogas production (BP) and analyzing structural changes with differential scanning calorimetry, polarizing and digital microscopic analyses, and Fourier transform infrared spectroscopy. After 1 year, FOXO had not degraded; thus, there were no visible changes on its surface and no BP. The bio-based materials produced small amounts of biogas (25.2, FPLA, and 30.4 L/kg VS, FS), constituting 2.1–2.5% of theoretical methane potential. The foil pieces were still visible and only starting to show damage; some pores had appeared in their structure. The structure of FPLA became more heterogeneous due to water diffusing into the structure. In contrast, the structure of FS became more homogenous although individual cracks and fissures appeared. The color of FS had changed, indicating that it was beginning to biodegrade. The fact that FS and FPLA showed only minor structural damage after a one-year mesophilic degradation indicates that, in these conditions, these materials would persist for an unknown but long amount of time.
The objective of this study was to compare three methods for determining the Young’s modulus of polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) samples. The samples were manufactured viathe fused filament fabrication/fused deposition modeling (FFF/FDM) 3D printing technique. Samples for analysis were obtained at processing temperatures of 180 °C to 230 °C. Measurements were performed with the use of two nondestructive techniques: the impulse excitation technique (IET) and the ultrasonic (US) method. The results were compared with values obtained in static tensile tests (STT), which ranged from 2.06 ± 0.03 to 2.15 ± 0.05 GPa. Similar changes in Young’s modulus were observed in response to the processing temperatures of the compared methods. The values generated by the US method were closer to the results of the STT, but still diverged considerably, and the error exceeded 10% in all cases. Based on the present findings, it might be concluded that the results of destructive and nondestructive tests differ by approximately 1 GPa.
The article analysis the effect of exposure to ultraviolet light on the hardening process of the model made in the SLA technology. Research samples were created with the SLA additive technique using a 10s exposure time. In this experiment, the change in item hardness and density over a 96-hour period was analysed. Light exposure time for details of an item made in SLA technology results in an increase in hardness. At the same time are observed, changes in density and stabilization of both parameters with increasing exposure time to UV light.
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.