The retina represents a paradox, in that, while light and oxygen are essential for vision, these conditions also favour the formation of reactive oxygen species leading to photochemical damage to the retina. Such light damage seems to be multi-factorial and is dependent on the photoreactivity of a variety of chromophores (e.g., vitamin A metabolites, lipofuscin, melanin, flavins, porphyrins, carotenoids) endogenous to the retina. The aim of this article is to provide a detailed review of our current understanding of the photochemistry and photobiology of these chromophores and to consider how they may contribute to retinal ageing and pathology.
Aerobic photoreactivity of RPE lipofuscin substantially increases with aging. This effect may be ascribed to the increased content of insoluble components.
Human melanosomes act as effective antioxidants by preventing iron ion-induced oxidation. Photodegradation of melanosomes results in the loss of these antioxidant properties while it preserves their ability to deactivate cationic photosensitizers.
Lipofuscin or "age pigment" is a lipid-protein complex which accumulates in a variety of postmitotic, metabolically active cells throughout the body. These complexes, which are thought to result from the incomplete degradation of oxidised substrate, have the potential for photoreactivity. This is particularly so in the retina in which the lipofuscin not only contains retinoid metabolites but is also exposed to high oxygen and fluxes of visible light all of which provide an ideal environment for the generation of reactive oxygen species (ROS). Lipofuscin is a potent photoinducible generator of ROS with the potential to damage proteins, lipids and DNA. Retinal cell dysfunction may be strongly associated with photoreactivity of lipofuscin and may contribute to age-related disease and vision loss.
All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.