We consider Multiway Cut, a basic graph partitioning problem in which the goal is to find the minimum weight collection of edges disconnecting a given set of special vertices called terminals. Multiway Cut admits a well known simplex embedding relaxation, where rounding this embedding is equivalent to partitioning the simplex. Current best known solutions to the problem are comprised of a mix of several different ingredients, resulting in intricate algorithms. Moreover, the best of these algorithms is too complex to fully analyze analytically and its approximation factor was verified using a computer. We propose a new approach to simplex partitioning and the Multiway Cut problem based on general transformations of the simplex that allow dependencies between the different variables. Our approach admits much simpler algorithms, and in addition yields an approximation guarantee for the Multiway Cut problem that (roughly) matches the current best computer verified approximation factor.
We consider multiway cut, a basic graph partitioning problem in which the goal is to find the minimum weight collection of edges disconnecting a given set of special vertices called terminals. Multiway cut admits a well-known simplex embedding relaxation, where rounding this embedding is equivalent to partitioning the simplex. Current best-known solutions to the problem are comprised of a mix of several different ingredients, resulting in intricate algorithms. Moreover, the best of these algorithms is too complex to fully analyze analytically, and a computer was partly used in verifying its approximation factor. We propose a new approach to simplex partitioning and the multiway cut problem based on general transformations of the simplex that allow dependencies between the different variables. Our approach admits much simpler algorithms and, in addition, yields an approximation guarantee for the multiway cut problem that (roughly) matches the current best computer-verified approximation factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.