How does the primate visual system encode three-dimensional motion? The macaque middle temporal area (MT) and the human MT complex (MT+) have well-established sensitivity to two-dimensional frontoparallel motion and static disparity. However, evidence for sensitivity to three-dimensional motion has remained elusive. We found that human MT+ encodes two binocular cues to three-dimensional motion: changing disparities over time and interocular comparisons of retinal velocities. By varying important properties of moving dot displays, we distinguished these three-dimensional motion signals from their constituents, instantaneous binocular disparity and monocular retinal motion. An adaptation experiment confirmed direction selectivity for three-dimensional motion. Our results indicate that MT+ carries critical binocular signals for three-dimensional motion processing, revealing an important and previously overlooked role for this well-studied brain area.
Immersive technologies, such as virtual and augmented reality, initially failed to live up to expectations, but have improved greatly, with many new head-worn displays and associated applications being released over the past few years. Unfortunately, 'cybersickness' remains as a common user problem that must be overcome if mass adoption is to be realized. This article evaluates the state of research on this problem, identifies challenges that must be addressed, and formulates an updated cybersickness research and development (R&D) agenda. The new agenda recommends prioritizing creation of powerful, lightweight, and untethered head-worn displays, reduction of visual latencies, standardization of symptom and aftereffect measurement, development of improved countermeasures, and improved understanding of the magnitude of the problem and its implications for job performance. Some of these priorities are unresolved problems from the original agenda which should get increased attention now that immersive technologies are proliferating widely. If the resulting R&D agenda is carefully executed, it should render cybersickness a challenge of the past and accelerate mass adoption of immersive technologies to enhance training, performance, and recreation.
Two binocular cues are thought to underlie the visual perception of three-dimensional (3D) motion: a disparity-based cue, which relies on changes in disparity over time, and a velocity-based cue, which relies on interocular velocity differences. The respective building blocks of these cues, instantaneous disparity and retinal motion, exhibit very distinct spatial and temporal signatures. Although these two cues are synchronous in naturally moving objects, disparity-based and velocity-based mechanisms can be dissociated experimentally. We therefore investigated how the relative contributions of these two cues change across a range of viewing conditions. We measured direction-discrimination sensitivity for motion though depth across a wide range of eccentricities and speeds for disparity-based stimuli, velocity-based stimuli, and "full cue" stimuli containing both changing disparities and interocular velocity differences. Surprisingly, the pattern of sensitivity for velocity-based stimuli was nearly identical to that for full cue stimuli across the entire extent of the measured spatiotemporal surface and both were clearly distinct from those for the disparity-based stimuli. These results suggest that for direction discrimination outside the fovea, 3D motion perception primarily relies on the velocity-based cue with little, if any, contribution from the disparity-based cue.
Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways.
Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.