TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90–95%) are sporadic (sALS), among familial ALS cases 5–10% involve the inheritance of mutations in the TARDBP gene and the remaining (90–95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS , and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo , liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
SummaryAlthough many proteins can misfold into a self-seeding amyloid-like conformation1, only six are known to be infectious, i.e. prions; [PSI+], [PIN+], [URE3], [SWI+] and [HET-s] cause distinct heritable physiological changes in fungi2–4, while PrPSc causes infectious encephalopathies in mammals5. It is unknown if “protein-only” inheritance is limited to these exceptional cases, or represents a widespread mechanism of epigenetic control. Towards this goal, we now describe a new prion formed by the Cyc8 (Ssn6) protein of Saccharomyces cerevisiae. Analogous to other yeast prions, transient over-production of a glutamine-rich region of Cyc8 induced a heritable dominant cyc8− phenotype that is transmitted cytoplasmically and dependent on the chaperone Hsp104 and the continued presence of the Cyc8 protein. The evolutionarily conserved Cyc8-Tup1 global transcriptional repressor complex6 forms one of the largest gene regulatory circuits, controlling the expression of over 7% of yeast genes7. Our finding that Cyc8 can propagate as a prion, together with a recent report that Swi1 of the Swi-Snf global transcriptional regulatory complex also has a prion form4, shows that prionization can lead to mass activation or repression of yeast genes and is suggestive of a link between the epigenetic phenomena of chromatin remodeling and prion formation.
SummaryPrions are self-propagating infectious protein conformations. The mammalian prion, PrP Sc , responsible for neurodegenerative diseases like mad-cow and Creutzfeldt Jacob's diseases, appears to be a β-sheet rich amyloid conformation of PrP c that converts PrP c into PrP Sc
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with aggregation of TAR DNA-binding protein-43 (TDP-43) in neuronal cells and manifests as motor neuron dysfunction & muscle atrophy. The carboxyl-terminal prion-like domain of TDP-43 can aggregate in vitro into toxic β-sheet rich amyloid-like structures. So far, treatment options for ALS are very limited and Riluzole, which targets glutamate receptors, is the only but highly ineffective drug. Therefore, great interest exists in developing molecules for ALS treatment. Here, we have examined certain derivatives of acridine containing same side chains at position 4 & 5, for inhibitory potential against TDP-43 aggregation. Among several acridine derivatives examined, AIM4, which contains polar carboxyl groups in the side arms, significantly reduces TDP-43-YFP aggregation in the powerful yeast model cell and also abolishes in vitro amyloid-like aggregation of carboxyl terminal domain of TDP-43, as observed by AFM imaging. Thus, AIM4 can be a lead molecule potentiating further therapeutic research for ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.