TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90–95%) are sporadic (sALS), among familial ALS cases 5–10% involve the inheritance of mutations in the TARDBP gene and the remaining (90–95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS , and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo , liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd.
TDP-43 is an RNA/DNA-binding protein of versatile physiological functions and it is also implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) disease in addition to several other implicated proteins such as mutant SOD1 and FUS etc.Cytoplasmic mis-localization, liquid-liquid phase separation (LLPS) due to RNA depletion and aggregation of TDP-43 are suggested to be important TDP-43-toxicity causing mechanisms for the ALS manifestation. So far, therapeutic options for ALS are extremely minimal and ineffective therefore, multi-faceted approaches such as treating the oxidative stress and inhibiting the TDP-43's aggregation are being actively pursued. In our recent study, an acridine imidazolium derivative compound, AIM4, has been identified to have anti-TDP-43 aggregation propensity however, its mechanism of inhibition is not deciphered. In this study, we have utilized computational methods to examine binding site(s) of AIM4 in the TDP-43 structure and have also compared its binding efficiency with several other relevant compounds. We find that AIM4 has a binding site in the C-terminal amyloidogenic core region of amino acids aa: 288-319, which coincides with one of the key residue motifs that could potentially mediate liquid-liquid phase separation (LLPS) of TDP-43. Importantly, alike to the previously reported effects exerted by RNA molecules, we found that AIM4 could also inhibit the in vitro LLPS of a recombinantly purified C-terminal fragment TDP-43 2C bearing an A315T familial mutation. Antagonistic effects of AIM4 towards LLPS which is believed as the precursor process to the TDP-43's aggregation and the in silico prediction of a binding site of AIM4 on TDP-43 occurring in the same region, assert that AIM4 could be an important .
TDP-43 protein is found deposited as inclusions in the amyotrophic lateral sclerosis (ALS) patient's brain. The mechanism of neuron death in ALS is not fully deciphered but several TDP-43 toxicity mechanisms such as misregulation of autophagy, mitochondrial impairment and generation of oxidative stress etc., have been implicated. A predominantly nuclear protein, Cyclin C, can regulate the oxidative stress response via transcription of stress response genes and also by translocation to the cytoplasm for the activation of mitochondrial fragmentationdependent cell death pathway. Using the well-established yeast TDP-43 proteinopathy model, we examined here whether upon TDP-43 aggregation, cell survival depends on the CNC1 gene that encodes the Cyclin C protein or other genes which encode proteins that function in conjunction with Cyclin C, such as DNM1, FIS1 and MED13. We show that the TDP-43's toxicity is significantly reduced in yeast deleted for CNC1 or DNM1 genes and remains unaltered by deletions of genes, FIS1 and MED13. Importantly, this rescue is observed only in presence of functional mitochondria. Also, deletion of the YBH3 gene involved in the mitochondria-dependent apoptosis pathway reduced the TDP-43 toxicity. Deletion of the VPS1 gene involved in the peroxisomal fission pathway did not mitigate the TDP-43 toxicity. Strikingly, Cyclin C-YFP was observed to relocate to the cytoplasm in response to TDP-43's co-expression which was prevented by addition of an anti-oxidant molecule, N-acetyl cysteine. Overall, the Cyclin C, Dnm1 and Ybh3 proteins are found to be important players in the TDP-43induced oxidative stress-mediated cell death in the S. cerevisiae model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.