Objective The current study aimed to translate the Australian Type 2 Diabetes Risk Assessment tool (AUSDRISK) into the Arabic language and evaluate the reliability and validity of the resultant Arabic version among Egyptians. The AUSDRISK was translated into Arabic language using the World Health Organization (WHO) forward and backward translation protocol. Using the WHO cluster sampling, a sample of 18+ years 719 Egyptians was randomly selected through a population-based household survey. Each participant was interviewed to fill the AUSDRISK Arabic version risk score and undergo confirmatory testing for fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT). Test-retest reliability and convergent validity were computed. Results Most of the study participants were physically active (60.5%) and females (69.3%). The Arabic version of the AUSDRISK reflected statistically significant perfect positive correlation (r = 1 and p < 0.01) for test re-test reliability as well as a significant moderate positive correlation with each of FPG (r = 0.48, p < 0.01) and OGTT (r = 0.52, p < 0.01) for the criterion-related (convergent) validity. The recalibrated noninvasive AUSDRISK Arabic version proved to be a simple, reliable, and valid predictive tool, and thereof, its employment for opportunistic mass public screening is strongly recommended. This can reduce diabetes mellitus Type 2disease burden and health expenditure.
Background The global prevalence of abnormal glycemic level comprising diabetes mellitus (DM) and pre-diabetes (PDM) is rapidly increasing with special concern for the entity silent or undiagnosed diabetes; those unaware of their condition. Identification of people at risk became much easier with the use of risk charts than the traditional methods. The current study aimed to conduct a community-based screening for T2DM to estimate the prevalence of undiagnosed DM and to assess the AUSDRISK Arabic version as a predictive tool in an Egyptian context. Methods A cross-sectional study was conducted among 719 Adults aging 18 years or more and not known to be diabetics through a population-based household survey. Each participant was interviewed to fill demographic and medical data as well as the AUSDRISK Arabic version risk score and undergo testing for fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT). Results The prevalence of DM and PDM were 5% and 21.7% respectively. The multivariate analysis revealed that age, being physically inactive, history of previous abnormal glycemic level and waist circumference were the predictors for having abnormal glycemic level among the studied participants. At cut off points ≥ 13 and ≥ 9, the AUSDRISK respectively discriminated DM [sensitivity (86.11%), specificity (73.35%), and area under the curve (AUC): 0.887, 95% CI: 0.824–0.950] and abnormal glycemic level [sensitivity (80.73%), specificity (58.06%), and AUC: 0.767, 95% CI: 0.727–0.807], p < 0.001. Conclusions Overt DM just occupies the top of an iceberg, its unseen big population have undiagnosed DM, PDM or been at risk of T2DM because of sustained exposure to the influential risk factors. The AUSDRISK Arabic version was proved to be sensitive and specific tool to be used among Egyptians as a screening tool for the detection of DM or abnormal glycemic level. A prominent association has been demonstrated between AUSDRISK Arabic version score and the diabetic status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.