Early diagnosis of retinal OCT images has been shown to curtail blindness and visual impairments. However, the advancement of ophthalmic imaging technologies produces an ever-growing scale of retina images, both in volume and variety, which overwhelms the ophthalmologist ability to segment these images. While many automated methods exist, speckle noise and intensity inhomogeneity negatively impacts the performance of these methods. We present a comprehensive and fully automatic method for annotation of retinal layers in OCT images comprising of fuzzy histogram hyperbolisation (FHH) and graph cut methods to segment 7 retinal layers across 8 boundaries. The FHH handles speckle noise and inhomogeneity in the preprocessing step. Then the normalised vertical image gradient, and it’s inverse to represent image intensity in calculating two adjacency matrices and then the FHH reassigns the edge-weights to make edges along retinal boundaries have a low cost, and graph cut method identifies the shortest-paths (layer boundaries). The method is evaluated on 150 B-Scan images, 50 each from the temporal, foveal and nasal regions were used in our study. Promising experimental results have been achieved with high tolerance and adaptability to contour variance and pathological inconsistency of the retinal layers in all (temporal, foveal and nasal) regions. The method also achieves high accuracy, sensitivity, and Dice score of 0.98360, 0.9692 and 0.9712, respectively in segmenting the retinal nerve fibre layer. The annotation can facilitate eye examination by providing accurate results. The integration of the vertical gradients into the graph cut framework, which captures the unique characteristics of retinal structures, is particularly useful in finding the actual minimum paths across multiple retinal layer boundaries. Prior knowledge plays an integral role in image segmentation.
No abstract
The four major causes of blindness are age-related diseases, out of which three affects the retina. These diseases, i.e., glaucoma, diabetic retinopathy, and age-related macular degeneration, require life-long treatment and cause irreversible blindness. Conversely, early diagnosis has been shown to curtail or prevent blindness and visual impairments. A critical element of the clinical diagnosis is the analysis of individual retinal layer properties, as the manifestation of the dominant eye diseases has been shown to correlate with structural changes to the retinal layers. Regrettably, manual segmentation is dependent on the ophthalmologist's level of expertise, and currently becoming impractical due to advancement in imaging modalities. Inherently, much research on computer-aided diagnostic methods is conducted to aid in extracting useful layer information from these images, which were inaccessible without these techniques. However, speckle noise and intensity inhomogeneity remain a challenge with a detrimental effect on the performance of automated methods. In this paper, we propose a method comprising of fuzzy image processing techniques and graph-cut methods to robustly segment optical coherence tomography (OCT) into five (5) distinct layers. Notably, the method establishes a specific region of interest to suppress the interference of speckle noise, while Fuzzy C-means is utilized to build data terms for better integration into the continuous max-flow to handle inhomogeneity. The method is evaluated on 225 OCT B-scan images, and promising experimental results were achieved. The method will allow for early diagnosis of major eye diseases by providing the basic, yet critical layer information necessary for an effective eye examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.