Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factorets variant 5a(etv5a) during MCC fate choice, where modulating prostaglandin E2(PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
The genetic regulation of nephron patterning during kidney organogenesis remains poorly understood. Nephron tubules in zebrafish are composed of segment populations that have unique absorptive and secretory roles, as well as multiciliated cells (MCCs) that govern fluid flow. Here, we report that the transcription factor
iroquois 2a
(
irx2a
) is requisite for zebrafish nephrogenesis.
irx2a
transcripts localized to the developing pronephros and maturing MCCs, and loss of function altered formation of two segment populations and reduced MCC number. Interestingly,
irx2a
deficient embryos had reduced expression of an essential MCC gene
ets variant 5a (etv5a)
, and were rescued by
etv5a
overexpression, supporting the conclusion that
etv5a
acts downstream of
irx2a
to control MCC ontogeny. Finally, we found that retinoic acid (RA) signaling affects the
irx2a
expression domain in renal progenitors, positioning
irx2a
downstream of RA. In sum, this work reveals new roles for
irx2a
during nephrogenesis, identifying
irx2a
as a crucial connection between RA signaling, segmentation, and the control of
etv5a
mediated MCC formation. Further investigation of the genetic players involved in these events will enhance our understanding of the molecular pathways that govern renal development, which can be used help create therapeutics to treat congenital and acquired kidney diseases.
High nitrate levels in the environment may result in congenital defects or miscarriages in humans. Presumably, this is due to the conversion of nitrate to nitrite by gut and salivary bacteria. However, in other mammalian studies, high nitrite levels do not cause birth defects, although they can lead to poor reproductive outcomes. Thus, the teratogenic potential of nitrite is not clear. It would be useful to have a vertebrate model system to easily assess teratogenic effects of nitrite or any other chemical of interest. Here, we demonstrate the utility of zebrafish (Danio rerio) to screen compounds for toxicity and embryonic defects. Zebrafish embryos are fertilized externally and have rapid development, making them a good model for teratogenic studies. We show that increasing the time of exposure to nitrite negatively affects survival. Increasing the concentration of nitrite also adversely affects survival, whereas nitrate does not. For embryos that survive nitrite exposure, various defects can occur, including pericardial and yolk sac edema, swim bladder noninflation, and craniofacial malformation. Our results indicate that the zebrafish is a convenient system for studying the teratogenic potential of nitrite. This approach can easily be adapted to test other chemicals for their effects on early vertebrate development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.