Kidney formation involves patterning events that induce renal progenitors to form nephrons with an intricate composition of multiple segments. Here, we performed a chemical genetic screen using zebrafish and discovered that prostaglandins, lipid mediators involved in many physiological functions, influenced pronephros segmentation. Modulating levels of prostaglandin E2 (PGE2) or PGB2 restricted distal segment formation and expanded a proximal segment lineage. Perturbation of prostaglandin synthesis by manipulating Cox1 or Cox2 activity altered distal segment formation and was rescued by exogenous PGE2. Disruption of the PGE2 receptors Ptger2a and Ptger4a similarly affected the distal segments. Further, changes in Cox activity or PGE2 levels affected expression of the transcription factors irx3b and sim1a that mitigate pronephros segment patterning. These findings show for the first time that PGE2 is a regulator of nephron formation in the zebrafish embryonic kidney, thus revealing that prostaglandin signaling may have implications for renal birth defects and other diseases.DOI: http://dx.doi.org/10.7554/eLife.17551.001
Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factorets variant 5a(etv5a) during MCC fate choice, where modulating prostaglandin E2(PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a-deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.
Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) is perhaps best known as a master regulator of mitochondrial biogenesis and function. However, by virtue of its interactions as a coactivator for numerous nuclear receptors and transcription factors, PGC-1α also regulates many tissue-specific tasks that include adipogenesis, angiogenesis, gluconeogenesis, heme biosynthesis, thermogenesis, and cellular protection against degeneration. Knowledge about these functions continue to be discovered with ongoing research. Unsurprisingly, alterations in PGC-1α expression lead to a range of deleterious outcomes. In this review, we provide a brief background on the PGC-1 family with an overview of PGC-1α’s roles as an adaptive link to meet cellular needs and its pathological consequences in several organ contexts. Among the latter, kidney health is especially reliant on PGC-1α. Thus, we discuss here at length how changes in PGC-1α function impact the states of renal cancer, acute kidney injury (AKI) and chronic kidney disease (CKD), as well as emerging data that illuminate pivotal roles for PGC-1α during renal development. We survey a new intriguing association of PGC-1α function with ciliogenesis and polycystic kidney disease (PKD), where recent animal studies revealed that embryonic renal cyst formation can occur in the context of PGC-1α deficiency. Finally, we explore future prospects for PGC-1α research and therapeutic implications for this multifaceted coactivator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.