Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factorets variant 5a(etv5a) during MCC fate choice, where modulating prostaglandin E2(PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a-deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.
Vertebrate kidneys contain nephron functional units where specialized epithelial cell types are organized into segments with discrete physiological roles. Many gaps remain in our understanding of how segment regions develop. Here, we report that the transcription factor empty spiracles homeobox gene 1 (emx1) is a novel nephron segment regulator during embryonic kidney development in zebrafish. emx1 loss of function altered the domains of distal segments without changes in cell turnover or traits like size and morphology, indicating that emx1 directs distal segment fates during nephrogenesis. In exploring how emx1 influences nephron patterning, we found that retinoic acid (RA), a morphogen that induces proximal and represses distal segments, negatively regulates emx1 expression. Next, through a series of genetic studies, we found that emx1 acts downstream of a cascade involving mecom and tbx2b, which encode essential distal segment transcription factors. Finally, we determined that emx1 regulates the expression domains of irx3b and irx1a to control distal segmentation, and sim1a to control corpuscle of Stannius formation. Taken together, our work reveals for the first time that emx1 is a key component of the pronephros segmentation network, which has implications for understanding the genetic regulatory cascades that orchestrate vertebrate nephron patterning.
The genetic regulation of nephron patterning during kidney organogenesis remains poorly understood. Nephron tubules in zebrafish are composed of segment populations that have unique absorptive and secretory roles, as well as multiciliated cells (MCCs) that govern fluid flow. Here, we report that the transcription factor iroquois 2a ( irx2a ) is requisite for zebrafish nephrogenesis. irx2a transcripts localized to the developing pronephros and maturing MCCs, and loss of function altered formation of two segment populations and reduced MCC number. Interestingly, irx2a deficient embryos had reduced expression of an essential MCC gene ets variant 5a (etv5a) , and were rescued by etv5a overexpression, supporting the conclusion that etv5a acts downstream of irx2a to control MCC ontogeny. Finally, we found that retinoic acid (RA) signaling affects the irx2a expression domain in renal progenitors, positioning irx2a downstream of RA. In sum, this work reveals new roles for irx2a during nephrogenesis, identifying irx2a as a crucial connection between RA signaling, segmentation, and the control of etv5a mediated MCC formation. Further investigation of the genetic players involved in these events will enhance our understanding of the molecular pathways that govern renal development, which can be used help create therapeutics to treat congenital and acquired kidney diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.