Listeria monocytogenes is a food-borne pathogen capable of growth at refrigeration temperatures. Membrane lipid fatty acids are major determinants of a sufficiently fluid membrane state to allow growth at low temperatures. L. monocytogenes was characterized by a fatty acid profile dominated to an unusual extent (>95%) by branched-chain fatty acids, with the major fatty acids being anteiso-C 15:0 , anteiso-C 17:0 , and iso-C 15:0 in cultures grown in complex or defined media at 37°C. Determination of the fatty acid composition of L. monocytogenes 10403S and SLCC 53 grown over the temperature range 45 to 5°C revealed two modes of adaptation of fatty acid composition to lower growth temperatures: (i) shortening of fatty acid chain length and (ii) alteration of branching from iso to anteiso. Two transposon Tn917-induced cold-sensitive mutants incapable of growth at low temperatures had dramatically altered fatty acid compositions with low levels of i-C 15:0 , a-C 15:0 , and a-C 17:0 and high levels of i-C 14:0 , C 14:0 , i-C 16:0 , and C 16:0. The levels of a-C 15:0 and a-C 17:0 and the ability to grow at low temperatures were restored by supplementing media with 2-methylbutyric acid, presumably because it acted as a precursor of methylbutyryl coenzyme A, the primer for synthesis of anteiso odd-numbered fatty acids. When mid-exponential-phase 10403S cells grown at 37°C were temperature downshocked to 5°C they were able, for the most part, to reinitiate growth before the membrane fatty acid composition had reset to a composition more typical for low-temperature growth. No obvious evidence was found for a role for fatty acid unsaturation in adaptation of L. monocytogenes to cold temperature. The switch to a fatty acid profile dominated by a-C 15:0 at low temperatures and the association of cold sensitivity with deficiency of a-C 15:0 focus attention on the critical role of this fatty acid in growth of L. monocytogenes in the cold, presumably through its physical properties and their effects, in maintaining a fluid, liquid-crystalline state of the membrane lipids.
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL -1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.