The objective of this work is the design and validation of a directional Vivaldi antenna to detect tumor cells’ electromagnetic waves with a frequency of around 5 GHz. The proposed antenna is 33% smaller than a traditional Vivaldi antenna due to the use of metamaterials in its design. It has an excellent return loss of 25 dB at 5 GHz and adequate radiation characteristics as its gain is 6.2 dB at 5 GHz. The unit cell size of the proposed metamaterial is 0.058λ × 0.054λ at the operation frequency of 5 GHz. The proposed antenna was designed and optimized in CST microwave software, and the measured and simulated results were in good agreement. The experimental study demonstrates that an array composed with the presented antennas can detect the existence of tumors in a liquid breast phantom with positional accuracy through the analysis of the minimum amplitude of Sii.
This paper provides modeling and simulation insights into field-effect transistors based on graphene (GFET), focusing on the devices’ architecture with regards to the position of the gate (top-gated graphene transistors, back-gated graphene transistors, and top-/back-gated graphene transistors), substrate (silicon, silicon carbide, and quartz/glass), and the graphene growth (CVD, CVD on SiC, and mechanical exfoliation). These aspects are explored and discussed in order to facilitate the selection of the appropriate topology for system-level design, based on the most common topologies. Since most of the GFET models reported in the literature are complex and hard to understand, a model of a GFET was implemented and made available in MATLAB, Verilog in Cadence, and VHDL-AMS in Simplorer—useful tools for circuit designers with different backgrounds. A tutorial is presented, enabling the researchers to easily implement the model to predict the performance of their devices. In short, this paper aims to provide the initial knowledge and tools for researchers willing to use GFETs in their designs at the system level, who are looking to implement an initial setup that allows the inclusion of the performance of GFETs.
This chapter intends to deal with the challenging field of communication systems known as reconfigurable radio-frequency systems. Mainly, it will present and analyze the design of different reconfigurable components based on radio-frequency microelectromechanical systems (RF MEMS) for different applications. This chapter will start with the description of the attractive properties that RF MEMS structures offer, giving flexibility in the RF systems design, and how these properties may be used for the design of reconfigurable RF MEMS-based devices. Then, the chapter will discuss the design, modeling, and simulation of reconfigurable components based on both theoretical modeling and well-known electromagnetic computing tools such as ADS, CST-MWS, and HFSS to evaluate the performance of such devices. Finally, the chapter will deal with the design and performance assessment of RF MEMS-based devices. Non-radiating devices, such as phase shifter and resonators, which are very important components in the hardware RF boards, will be addressed. Also, three types of frequency reconfigurable antennas, for the three different applications (radar, satellite, and wireless communication), will be proposed and evaluated. From this study, based on theoretical design and electromagnetic computing evaluation, it has been shown that RF MEMS-based devices can be an enabling solution in the design of the multiband reconfigurable radio-frequency devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.