Bandshape luminescence thermometry during in situ temperature measurements has been reported by preparing three catalytically relevant systems, which show temperature-dependent luminescence. One of these systems was further investigated as a showcase for application. Microcrystalline NaYF4 doped with Er3+ and Yb3+ was mixed with a commercial zeolite H-ZSM-5 to investigate the Methanol-to-Hydrocarbons (MTH) reaction, while monitoring the reaction products with online gas chromatography. Due to the exothermic nature of the MTH reaction, a front of increased temperature migrating down the fixed reactor bed was visualized, showing the potential for various applications of luminescence thermometry for in situ measurements in catalytic systems.
Conspectus Intuitively, chemists see crystals grow atom-by-atom or molecule-by-molecule, very much like a mason builds a wall, brick by brick. It is much more difficult to grasp that small crystals can meet each other in a liquid or at an interface, start to align their crystal lattices and then grow together to form one single crystal. In analogy, that looks more like prefab building. Yet, this is what happens in many occasions and can, with reason, be considered as an alternative mechanism of crystal growth. Oriented attachment is the process in which crystalline colloidal particles align their atomic lattices and grow together into a single crystal. Hence, two aligned crystals become one larger crystal by epitaxy of two specific facets, one of each crystal. If we simply consider the system of two crystals, the unifying attachment reduces the surface energy and results in an overall lower (free) energy of the system. Oriented attachment often occurs with massive numbers of crystals dispersed in a liquid phase, a sol or crystal suspension. In that case, oriented attachment lowers the total free energy of the crystal suspension, predominantly by removal of the nanocrystal/liquid interface area. Accordingly, we should start by considering colloidal suspensions with crystals as the dispersed phase, i.e., “sols”, and discuss the reasons for their thermodynamic (meta)stability and how this stability can be lowered such that oriented attachment can occur as a spontaneous thermodynamic process. Oriented attachment is a process observed both for charge-stabilized crystals in polar solvents and for ligand capped nanocrystal suspensions in nonpolar solvents. In this last system different facets can develop a very different reactivity for oriented attachment. Due to this facet selectivity, crystalline structures with very specific geometries can be grown in one, two, or three dimensions; controlled oriented attachment suddenly becomes a tool for material scientists to grow architectures that cannot be reached by any other means. We will review the work performed with PbSe and CdSe nanocrystals. The entire process, i.e., the assembly of nanocrystals, atomic alignment, and unification by attachment, is a very complex and intriguing process. Researchers have succeeded in monitoring these different steps with in situ wave scattering methods and real-space (S)TEM studies. At the same time coarse-grained molecular dynamics simulations have been used to further study the forces involved in self-assembly and attachment at an interface. We will briefly come back to some of these results in the last sections of this review.
Nanoplatelets (NPLs) of CdSe are an emerging class of luminescent materials, combining tunable and narrow emission bands with high quantum yields. This is promising for application in white light LEDs (w-LEDs) and displays. The origin of the narrow spectral width of exciton emission in core NPL compared to core–shell NPL and quantum dot (QD) emission is not fully understood. Here we investigate and compare temperature-dependent emission spectra of core and core–shell CdSe NPLs and QDs. A wide temperature range, 4–423 K, is chosen to gain insight into contributions from homogeneous and inhomogeneous broadening and also to extend measurements into a temperature regime that is relevant for operating conditions in w-LEDs (T ≈ 423 K). The results show that temperature-induced homogeneous broadening does not strongly vary between the various CdSe nanostructures (ΔE hom ≈ 60–80 meV at 423 K) indicating that electron–phonon coupling strengths are similar. Only for the smallest QDs is stronger coupling observed. The origin of the narrow bandwidth reported at 300 K for core CdSe NPLs is attributed to a very narrow inhomogeneous line width. At 423 K, the spectral width of NPL exciton emission is still narrower than that of QDs. A comparison with traditional w-LED phosphors is made to outline advantages (tunability, narrow bandwidth, high efficiency) and disadvantages (color shift, stability issues) of NPLs for application in w-LEDs.
Trap states can strongly affect semiconductor nanocrystals, by quenching, delaying, and spectrally shifting the photoluminescence (PL). Trap states have proven elusive and difficult to study in detail at the ensemble level, let alone in the single-trap regime. CdSe nanoplatelets (NPLs) exhibit significant fractions of long-lived “delayed emission” and near-infrared “trap emission”. We use these two spectroscopic handles to study trap states at the ensemble and the single-particle level. We find that reversible hole trapping leads to both delayed and trap PL, involving the same trap states. At the single-particle level, reversible trapping induces exponential delayed PL and trap PL, with lifetimes ranging from 40 to 1300 ns. In contrast with exciton PL, single-trap PL is broad and shows spectral diffusion and strictly single-photon emission. Our results highlight the large inhomogeneity of trap states, even at the single-particle level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.