The dissolution of a compound results in the introduction and generation of gas bubbles in the solvent. This formation is due to entrained gases adhered to or trapped within the particles. Furthermore, a reduction in gas solubility due to the solute results in additional bubble generation. Their presence increases the compressibility of the solvent with the added effect of reducing the velocity of sound in the solvent. This effect is monitored via the frequency change of acoustic resonances that are mechanically provoked in the solvent and are now used as an insightful analytical technique. An experimental set up was designed to study a large number of compounds as a function of time, concentration, and solvent system. This revealed the role of the various physical and chemical mechanisms in determining the observed response. It is also shown that this response is strongly dependent on the physical and chemical characteristics of the solute compound used, therefore resulting in a method for the characterization of compounds and mixtures. Additional factors such as morphology (polymorphism), particle size, and dissolution rate are shown to be key in the variation of the resulting response. A mathematical model has also been developed in parallel, which inter-relates the various processes involved in the observed response. It is anticipated that BARDS will open up a new window into transient dissolution processes and compound characterization.
Link to publication on Research at Birmingham portal
General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The addition of a solute to a solvent is known to reduce the solubility of dissolved gases in solution which leads to gas oversaturation and outgassing of the solvent. The importance of the processes involved have received relatively little attention due to a limited capacity to elucidate their effects in real time. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) is a recently introduced acoustic approach which can monitor changes in the compressibility of a solvent due to outgassing. BARDS spectra show that a time dependent and quantitative reduction in gas oversaturation, following the dissolution of a simple salt, takes place over several hours. It is shown how vigorous agitation quickly equilibrates a solution, post dissolution, by removing gas oversaturation consistently. The level of oversaturation can be elucidated by further dissolving a marker compound into a solution consecutively. BARDS spectra indicate that the dissolution of a compound produces a consistent and quantifiable oversaturation of a solvent and a consistent and quantifiable outgassing. Low frequency sonication in an immersion bath is also shown to play no significant role in removing gas oversaturation post dissolution.
There is an increased trend towards the use of drug and enteric coated sugar spheres for controlled oral delivery of active pharmaceutical ingredients (API). This trend is driven by increased efficacy and ease of formulation of different dosage levels. However, difficulties exist in determining the thickness of drug and enteric coatings in a time efficient manner during manufacture, quality assurance and stability testing. The thickness of the coating determines the dosage of the API and the thickness of the enteric coating determines the release rate of the drug in the gastro-intestinal tract. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) offers a rapid new approach to characterising the enteric coating thickness and the raw materials used in their manufacture. BARDS applications are based on reproducible changes in the compressibility of a solvent during dissolution which is monitored acoustically due to associated changes in the speed of sound in solution. It is demonstrated how core delivery sugar spheres have unique acoustic spectra attributable to the mean size distribution of the spheres. A steady state acoustic lag time is associated with the disintegration of the enteric coating, in basic solution. This lag time can be manipulated by varying the concentration of the base which affects the rate at which the coating dissolves. It is anticipated that the thickness/loading of the spheres can be estimated from the lag time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.