Combustion plants based on wooden biomass as fuel can contribute to a decarbonization of the energy sector by reducing the need for fossil energy usage, which decreases the net carbon dioxide output in the atmosphere. However, the flue gas of biomassbased combustion plants contains increased amounts of particulate matter, which need to be separated before release into the environment because of legal emission limits. In medium-sized plants, electrostatic precipitators (ESP) are commonly used separators to minimize the particulate matter concentration. Due to new regulations based on the medium combustion plants directive introduced by the EU, continuous surveillance of secondary precipitation technologies like ESP has to be implemented. The method proposed in this paper focuses on the readily available current (I) and voltage (U) data of the high-voltage unit supply of an ESP to calculate the efficiency of the particle separation. Consequently, a continuous proof of function can be delivered without high cost for additional measurement equipment. This article proves the effectiveness of the method in calculating the precipitation effectiveness of the ESP. It is shown that the deviation from the separation efficiency calculated by the method and the measured efficiency is smaller than 7%. Additionally, it is necessary to define a suitable reference signal that indicates whether the combustion plant is running or not. Hence, the availability of the system can be evaluated. This method will help operators to meet legal requirements.
The targets of global CO2 reduction outline the importance of decarbonizing the heating and cooling sector, which consume half of the final energy in the European Union (EU). Consequently, heating network operators must adapt to growing requirements for carbon neutrality. Energy system modeling allows the simulation of individual network compositions and regulations, while considering electricity market signals for a more efficient plant operation. The district heating model, programmed for this work, covers a measured heat demand with peak load boiler, biomass-fired combined heat and power (CHP) plant, and biomass heating plant supply. The CHP plant reacts to electricity prices of the European Power Exchange market and uses a long-term heat storage to decouple heat and electricity production. This paper presents the results of three annual simulation scenarios aimed at carbon neutrality for the analyzed heating network. Two scenarios achieve a climate-neutral system by replacing the peak load boiler generation. The exclusive storage capacity expansion in the first scenario does not lead to the intended decarbonization. The second scenario increases the output of the CHP plant, while the third simulation uses the biomass heating plant supply. This additional heat producer enables a significant reduction in storage capacity and a higher CHP plant participation in the considered electricity market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.