Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation.
Context Piospheres describe herbivore utilization gradients around watering points, as commonly found in grass-dominated ecosystems. Spatially explicit, dynamic models are ideal tools to study the ecological and economic problems associated with the resulting land degradation. However, there is a need for appropriate landscape input maps to these models that depict plausible initial vegetation patterns under a range of scenarios. Objectives Our goal was to develop a spatiallyexplicit piosphere landscape generator (PioLaG) for semi-arid savanna rangelands with a focus on realistic vegetation zones and spatial patterns of basic plant functional types around livestock watering points. Methods We applied a hybrid modelling approach combining aspects of both process-and pattern-based modelling. Exemplary parameterization of PioLaG was based on literature data and expert interviews in reference to Kalahari savannas. PioLaG outputs were compared with piosphere formations identified on aerial images. Results PioLaG allowed to create rangeland landscapes with piospheres that can be positioned within Electronic supplementary material The online version of this article (
Motivated by establishing holographic renormalization for gravitational theories with non-metricity and torsion, we present a new and efficient general method for calculating Gibbons-Hawking-York (GHY) terms. Our method consists of linearizing any nonlinearity in curvature, torsion or non-metricity by introducing suitable Lagrange multipliers. Moreover, we use a split formalism for differential forms, writing them in (n-1)+1(n−1)+1 dimensions. The boundary terms of the action are manifest in this formalism by means of Stokes’ theorem, such that the compensating GHY term for the Dirichlet problem may be read off directly. We observe that only those terms in the Lagrangian that contain curvature contribute to the GHY term. Terms polynomial solely in torsion and non-metricity do not require any GHY term compensation for the variational problem to be well-defined. We test our method by confirming existing results for Einstein-Hilbert and four-dimensional Chern-Simons modified gravity. Moreover, we obtain new results for torsionful Lovelock-Chern-Simons and metric-affine gravity. For all four examples, our new method and results contribute to a new approach towards a systematic hydrodynamic expansion for spin and hypermomentum currents within AdS/CFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.