There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B(OH)]. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.
We present a synthetic approach to a highly pathogen-selective detection and delivery platform based on the interaction of an antibody nanovalve with a tetrasaccharide from the O-antigen of the lipopolysaccharide (LPS) of Francisella tularensis bacteria, a Tier 1 Select Agent of bioterrorism. Different design considerations are explored, and proof-of-concept for highly pathogen-specific cargo release from mesoporous silica nanoparticles is demonstrated by comparisons of the release of a signal transducer and model drug by LPS from F. tularensis vs Pseudomonas aeruginosa and by F. tularensis live bacteria vs the closely related bacterium Francisella novocida. In addition to the specific response to a biowarfare agent, treatment of infectious diseases in general could benefit tremendously from a delivery platform that releases its antibiotic payload only at the site of infection and only in the presence of the target pathogen, thereby minimizing off-target toxicities.
Imaging in the shortwave-infrared region (SWIR, λ = 1000-2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10' position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a ketone bridge at the C10' position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, these studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.