The annual number of publications at scientific venues, for example, conferences and journals, is growing quickly. Hence, even for researchers it becomes harder and harder to keep track of research topics and their progress. In this task, researchers can be supported by automated publication analysis. Yet, many such methods result in uninterpretable, purely numerical representations. As an attempt to support human analysts, we present topic space trajectories, a structure that allows for the comprehensible tracking of research topics. We demonstrate how these trajectories can be interpreted based on eight different analysis approaches. To obtain comprehensible results, we employ non-negative matrix factorization as well as suitable visualization techniques. We show the applicability of our approach on a publication corpus spanning 50 years of machine learning research from 32 publication venues. In addition to a thorough introduction of our method, our focus is on an extensive analysis of the results we achieved. Our novel analysis method may be employed for paper classification, for the prediction of future research topics, and for the recommendation of fitting conferences and journals for submitting unpublished work. An advantage in these applications over previous methods lies in the good interpretability of the results obtained through our methods.
For localization and mapping of indoor environments through WiFi signals, locations are often represented as likelihoods of the received signal strength indicator. In this work we compare various measures of distance between such likelihoods in combination with different methods for estimation and representation. In particular, we show that among the considered distance measures the Earth Mover's Distance seems the most beneficial for the localization task. Combined with kernel density estimation we were able to retain the topological structure of rooms in a real-world office scenario.
The ubiquitous presence of WiFi access points and mobile devices capable of measuring WiFi signal strengths allow for real-world applications in indoor localization and mapping. In particular, no additional infrastructure is required. Previous approaches in this field were, however, often hindered by problems such as effortful map-building processes, changing environments and hardware differences. We tackle these problems focussing on topological maps. These represent discrete locations, such as rooms, and their relations, e.g., distances and transition frequencies. In our unsupervised method, we employ WiFi signal strength distributions, dimension reduction and clustering. It can be used in settings where users carry mobile devices and follow their normal routine. We aim for applications in short-lived indoor events such as conferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.