Rationale Induction of the fetal hypertrophic marker gene beta-myosin heavy chain (β-MyHC) is a signature feature of pressure overload hypertrophy in rodents. β-MyHC is assumed present in all or most enlarged myocytes. Objective To quantify the number and size of myocytes expressing endogenous β-MyHC using a flow cytometry approach. Methods and Results Myocytes were isolated from the LV of male C57Bl/6J mice after transverse aortic constriction (TAC), and the fraction of cells expressing endogenous β-MyHC was quantified by flow cytometry on 10,000–20,000 myocytes, using a validated β-MyHC antibody. Side scatter by flow cytometry in the same cells was validated as an index of myocyte size. β-MyHC-positive myocytes were 3±1% of myocytes in control hearts (n=12), increasing to 25±10% at 3d-6w after TAC (n=24, p<0.01). β-MyHC-positive myocytes did not enlarge with TAC, and were smaller at all times than myocytes without β-MyHC (~70% as large, p<0.001). β-MyHC-positive myocytes arose by addition of β-MyHC to α-MyHC, and had more total MyHC after TAC than did the hypertrophied myocytes that had α-MyHC only. Myocytes positive for β-MyHC were found in discrete regions of the LV, in 3 patterns, peri-vascular, in areas with fibrosis, and in apparently normal myocardium. Conclusion β-MyHC protein is induced by pressure overload in a minor sub-population of smaller cardiac myocytes. The hypertrophied myocytes after TAC have α-MyHC only. These data challenge the current paradigm of the fetal hypertrophic gene program, and identify a new sub-population of smaller working ventricular myocytes with more myosin.
Rationale Quantifying cellular proteins in ventricular myocytes (MCs) is challenging due to tissue heterogeneity and the variety of cell sizes in the heart. In post-weaning cardiac ontogeny, rod-shaped MCs make up the majority of the cardiac mass while remaining a minority of cardiac cells in number. Current biochemical analyses of cardiac proteins do not correlate well the content of MC-specific proteins to cell type or size in normally developing tissue. Objective To develop a new MC-specific large-particle fluorescent-activated cell sorting (LP-FACS) strategy for the purification of adult rod-shaped MCs. This approach is developed to enable growth-scaled measurements per-cell of the MC proteome and sarcomeric protein (i.e. myosin heavy chain (MyHC) and alpha-actin (α-actin)) content. Methods and Results Individual cardiac cells were isolated from 21-94 days old mice. An LP-FACS jet-in-air system with a 200-μm nozzle was defined by the first time to purify adult MCs. Cell-type specific immunophenotyping and sorting yielded ≥95% purity of adult MCs independently of cell morphology and size. This approach excluded other cell types and tissue contaminants from further analysis. MC proteome, MyHC and α-actin proteins were measured in linear biochemical assays normalized to cell numbers. Using the allometric coefficient α, we scaled the MC-specific rate of protein accumulation to growth post-weaning. MC-specific volumes (α=1.02) and global protein accumulation (α=0.94) were proportional (i.e. isometric) to body mass. In contrast, MyHC and α-actin accumulated at a much greater rate (i.e. hyperallometric) than body mass (α= 1.79 and 2.19 respectively) and MC volumes (α= 1.76 and 1.45 respectively). Conclusion Changes in MC proteome and cell volumes measured in LP-FACS purified MCs are proportional to body mass post-weaning. Oppositely, MyHC and α-actin are concentrated more rapidly than what would be expected from MC proteome accumulation, cell enlargement, or animal growth alone. LP-FACS provides a new standard for adult MC purification and an approach to scale the biochemical content of specific proteins or group of proteins per cell in enlarging MCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.