NiCl2-4SC(NH2)2 (DTN) is a quantum S = 1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [ Phys. Rev. Lett. 96, 077204 (2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D = 8.9 K, Jc = 2.2 K, and J a,b = 0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained. PACS numbers: 75.40.Gb, 75.10.Jm Antiferromagnetic (AFM) quantum spin-1 chains have been the subject of intensive theoretical and experimental studies, fostered especially by the Haldane conjecture [1]. Due to quantum fluctuations, an isotropic spin-1 chain has a spin-singlet ground state separated from the first excited state by a gap ∆ ∼ 0.41J [2], where J is the exchange interaction. As shown by Golinelli et al. [3], the presence of a strong easy-plane anisotropy D can significantly modify the excitation spectrum, so that the gap size is not determined by the strength of the AFM quantum fluctuations exclusively, but depends on the dimensionless parameter ρ = D/J. The Haldane phase is predicted to survive up to ρ c = 0.93 [4], where the system undergoes a quantum phase transition. For ρ > ρ c the gap reopens, but its origin is dominated by the anisotropy D, and the system is in the so-called large-D regime. While the underlying physics of Haldane chains is fairly well understood, relatively little is known about the magnetic properties (and particularly the elementary excitation spectrum) of nonHaldane S = 1 AFM chains in the large-D phase. Intense theoretical work and numerous predictions [3,4,5,6,7,8,9,10] make the experimental investigation of large-D spin-1 chains a topical problem in low-dimensional magnetism.Recently, weakly-coupled spin-1 chains have attracted renewed interest due to their possible relevance to the fieldinduced Bose-Einstein condensation (BEC) of magnons. When the field H, applied perpendicular to the easy plane, exceeds a critical value H c1 (defined at T = 0), the gap closes and the system undergoes a transition into an XY -like AFM phase with a finite magnetization and AFM magnon excitations. If the spin Hamiltonian has axial symmetry with respect to the applied field, the AFM ordering can be described as BEC of magnons by mapping the spin-1 system into a gas of semi-hard-core bosons [11]. The applied field plays the role of a chemical potential, changing the boson population. In accordance with mean-field BEC theory [12,13,14], the phasediagram boundary for a three-dimensional system sh...
We study numerically the one dimensional ferromagnetic Kondo lattice, a model widely used to describe nickel and manganese perovskites. By including a nearest-neighbor Coulomb interaction ( V) and a superexchange interaction between the localized moments ( K), we obtain the phase diagram in parameter space for several dopings at T = 0. Because of the competition between double and superexchange, we find a region where the formation of magnetic polarons induces a charge-ordered state which survives also for V = 0. This mechanism should be taken into account in theories of charge ordering involving spin degrees of freedom.
We study the electronic excitations near the charge-transfer gap in insulating CuO 2 planes, starting from a six-band model which includes p π and d xy orbitals and Cu-O nearest-neighbor repulsion U pd . While the low lying electronic excitations in the doped system are well described by a modified t−J model, the excitonic states of the insulator include hybrid d xy − p π states of A 2g symmetry. We also obtain excitons of symmetries B 1g and E u , and eventually A 1g , which can be explained within a one-band model. The results agree with observed optical absorption and Raman excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.