Purpose Hybrid flow shop with multiprocessor task (HFSMT) has received considerable attention in recent years. The purpose of this paper is to consider an HFSMT scheduling under the environment of a common time window. The window size and location are considered to be given parameters. The research deals with the criterion of total penalty cost minimization incurred by earliness and tardiness of jobs. In this research, a new memetic algorithm in which a global search algorithm is accompanied with the local search mechanism is developed to solve the HFSMT with jobs having a common time window. The operating parameters of memetic algorithm have an important role on the quality of solution. In this paper, a full factorial experimental design is used to determining the best parameters of memetic algorithm for each problem type. Memetic algorithm is tested using HFSMT problems. Design/methodology/approach First, hybrid flow shop scheduling system and hybrid flow shop scheduling with multiprocessor task are defined. The applications of the hybrid flow shop system are explained. Also the background of hybrid flow shop with multiprocessor is given in the introduction. The features of the proposed memetic algorithm are described in Section 2. The experiment results are presented in Section 3. Findings Computational experiments show that the proposed new memetic algorithm is an effective and efficient approach for solving the HFSMT under the environment of a common time window. Originality/value There is only one study about HFSMT scheduling with time window. This is the first study which added the windows to the jobs in HFSMT problems.
Hybrid flow shop (HFS) scheduling problem is combining of the flow shop and parallel machine scheduling problem. Hybrid flow shop with multiprocessor task (HFSMT) scheduling problem is a special structure of the hybrid flow shop scheduling problem. The HFSMT scheduling is a well-known NP-hard problem. In this study, a new memetic algorithm which combined the global and local search methods is proposed to solve the HFSMT scheduling problems. The developed new memetic global and local search (MGLS) algorithm consists of four operators. These are natural selection, crossover, mutation and local search methods. A preliminary test is performed to set the best values of these developed new MGLS algorithm operators for solving HFSMT scheduling problem. The best values of the MGLS algorithm operators are determined by a full factorial experimental design. The proposed new MGLS algorithm is applied the 240 HFSMT scheduling instances from the literature. The performance of the generated new MGLS algorithm is compared with the genetic algorithm (GA), parallel greedy algorithm (PGA) and efficient genetic algorithm (EGA) which are used in the previous studies to solve the same set of HFSMT scheduling benchmark instances from the literature. The results show that the proposed new MGLS algorithm provides better makespan than the other algorithms for HFSMT scheduling instances. The developed new MGLS algorithm could be applicable to practical production environment.
Open shop scheduling problem (OSSP) can basically be defined as a scheduling problem where each job has just one operation to be processed on each machine and operation sequence is free to decide. It is usually seen in facilities that produce similar product families. In this study a Memetic algorithm is proposed for solving the OSSP, and the results are promising.
Son kullanıcılara malların doğru zamanda dağıtımı günümüz rekabetçi piyasasında önemli bir rol oynamaktadır. Bu bağlamda, yöneticiler, ekonomik ve çevresel hedefleri doğrultusunda uygun bir çözüm bulma gayreti içindeyken aynı zamanda, ürünlerin talep noktalarına tam zamanında teslim edilmesini ve böylece stok maliyetlerinin düşürülmesini de sağlamalıdırlar. Bu çalışma, dağıtım noktaları ve perakendecilerdeki stok tutma ile talebi doğru zamanda karşılamak arasındaki ilişkiyi ve dolayısıyla stok tutma maliyetleri ile ve karbon emisyonları arasında ilişkiyi araştırmayı hedeflemektedir. Bu sebeple, fabrika, depo ve perakendecilerden oluşan üç kademeli dağıtım ağı geliştirilmiş ve üç amaç fonksiyonu; toplam dağıtım ve üretim maliyeti, depolarda ve perakendecilerde ürünlerin depolanması ve elleçlenmesiyle ilişkili toplam karbon emisyonu ve perakendecilerden ardısmarlanmış (karşılanamamış, sonraya ertelenen, ingilizce: backordered) ürünlerin ve talep fazlası ürünlerin sayısı olarak belirlenmiştir. Geliştirilen model, hangi üreticiden, depolara ve oradan perakendecilere, perakendecilerin talebine cevap vermek için ne kadar miktarlarda taşınacağını, hangi fabrika ve depoların hangi boyutlarda açılacağını, depolardaki envanter miktarlarını da belirlemektedir. Bu çok amaçlı tam zamanında dağıtım modellemesi içeren yeşil tedarik zinciri modelinin çözümü için Tiwari, Dharmar ve Rao (1987) tarafından geliştirilen bulanık ağırlıklandırma yaklaşımı ilk defa kulanılmıştır. Pratik açıdan, çelişen ve farklı birimlere sahip amaçların aynı anda optimize edilmesine olanak verdiği için bu yöntem, yöneticiler ve karar vericiler açısından önem taşımaktadır. Bu bulanık edinim yöntemi, yöneticilerin her bir hedef işlev için göreli önemlerini belirlermesine imkan sağlaması da ayrıca önemlidir, çünkü bu sayede yöneticiler, hedeflerin de birbirlerine göre önem derecelerini kendi tedarik zincirlerine göre belirleyebilirler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.