Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The results show a 4.3× improvement in the Strehl ratio and a 240% improvement in the signal intensity for fixed mouse tissues at depths of up to 100 μm.
An iterative wavefront reconstruction method using Shack–Hartmann wavefront sensor (SHWFS) measurements is presented in this paper. A new cost function for the wavefront reconstruction problem is derived and the solution is obtained iteratively using the gradient descent method. The proposed method aims to effectively handle the scintillated SHWFS measurements and to provide simpler and accurate ways to achieve branch-point-tolerant wavefront reconstruction suitable for adaptive optics compensation of strong turbulence. Simulated iterative wavefront reconstruction results show the effectiveness of the proposed method. A laboratory optical testbed is also presented to show the experimental implementation of the proposed method.
Adaptive optics (AO) applications in astronomy and vision science require deformable mirrors (DMs) with high-stroke, high-order packing density at a lower cost than the currently available technology. The required AO specifications are achievable with microelectromechanical systems (MEMS) devices fabricated with LIGA (lithographie galvanofomung abformung) high-aspect-ratio processing techniques. Different actuator designs and a bonded faceplate fabricated in a LIGA process, enabling multilayer fabrication of MEMS devices, are investigated. Various types of high-stroke gold actuators for AO consisting of folded springs with rectangular and circular membranes as well as x-beam actuators supported diagonally by fixed-guided springs are designed, simulated, and fabricated individually and as part of a continuous-face-sheet DM system. The actuators and DM displacement versus voltage are measured with an interferometer and the corresponding results are compared to finite element analysis simulations. Simulations and interferometer scans show the ability of the actuators to achieve displacements of greater than 1/3 of the initial gap. A stroke of ∼9.4 μm is achieved, thus showing that this fabrication process holds promise in the manufacture of future MEMS DMs for the next generation of extremely large telescopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.