When lithium-oxygen batteries discharge, O2 is reduced at the cathode to form solid Li2O2. Understanding the fundamental mechanism of O2 reduction in aprotic solvents is therefore essential to realizing their technological potential. Two different models have been proposed for Li2O2 formation, involving either solution or electrode surface routes. Here, we describe a single unified mechanism, which, unlike previous models, can explain O2 reduction across the whole range of solvents and for which the two previous models are limiting cases. We observe that the solvent influences O2 reduction through its effect on the solubility of LiO2, or, more precisely, the free energy of the reaction LiO2(*) ⇌ Li(sol)(+) + O2(-)(sol) + ion pairs + higher aggregates (clusters). The unified mechanism shows that low-donor-number solvents are likely to lead to premature cell death, and that the future direction of research for lithium-oxygen batteries should focus on the search for new, stable, high-donor-number electrolytes, because they can support higher capacities and can better sustain discharge.
We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis.
Standardization and quality monitoring of alcoholic beverages is an important issue in the liquor production industry. Various spectroscopic techniques have proved useful for tackling this problem. An ideal sensing device for alcoholic beverages should be able to detect the quality of alcohol with a small amount of sample at a low acquisition time using a portable and easy to use device. We propose the use of near infra-red spectroscopy on an optofluidic chip for quality monitoring of single malt Scotch whisky. This is chip upon which we have previously realized waveguide confined Raman spectroscopy. Analysis on this alignment-free, portable chip may be performed in only 2 seconds with a sample volume of only 20 µl. Using a partial least square (PLS) calibration, we demonstrate that the alcohol content in the beverage may be predicted to within a 1% prediction error. Principal component analysis (PCA) was employed for successful classification of whiskies based upon their age, type and cask. The prospect of implementing an optofluidic analogue of a conventional fiber based spectroscopic probe allows a rapid analysis of alcoholic beverages with dramatically reduced sample volumes.
Femtosecond photoporation is an optical method for the injection of membrane impermeable substances into cells. Typically this is a low-throughput method where each cell is individually targeted. Here, we present a novel microfluidic platform with passive optical injection improving previously reported throughputs by one order of magnitude. In this new geometry, two-dimensional hydrodynamic focusing is achieved using a three-dimensional nozzle which confines mammalian cells to the central region of the microfluidic channel. A reusable quartz chip is designed so that a propagation invariant, 'non-diffracting' Bessel beam can be directed along the centre of the channel, parallel to but counter-propagating with the flow of cells in contrast to previous orthogonal geometries. This allows for higher flow speeds to be used whilst maintaining the necessary dwell time for cells in the core of the Bessel beam. Using this method, we have achieved viable injection of HL60 cells with propidium iodide with an efficiency of 20.4 ± 4.2% and CHO-K1 cells (31.0 ± 9.5%) at a rate of up to 10 cells s(-1).
In the field of biomedicine, Raman spectroscopy is a powerful technique to discriminate between normal and cancerous cells. However the strong background signal from the sample and the instrumentation affects the efficiency of this discrimination technique. Wavelength Modulated Raman spectroscopy (WMRS) may suppress the background from the Raman spectra. In this study we demonstrate a systematic approach for optimizing the various parameters of WMRS to achieve a reduction in the acquisition time for potential applications such as higher throughput cell screening. The Signal to Noise Ratio (SNR) of the Raman bands depends on the modulation amplitude, time constant and total acquisition time. It was observed that the sampling rate does not influence the signal to noise ratio of the Raman bands if three or more wavelengths are sampled. With these optimised WMRS parameters, we increased the throughput in the binary classification of normal human urothelial cells and bladder cancer cells by reducing the total acquisition time to 6 s which is significantly lower in comparison to previous acquisition times required for the discrimination between similar cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.