When lithium-oxygen batteries discharge, O2 is reduced at the cathode to form solid Li2O2. Understanding the fundamental mechanism of O2 reduction in aprotic solvents is therefore essential to realizing their technological potential. Two different models have been proposed for Li2O2 formation, involving either solution or electrode surface routes. Here, we describe a single unified mechanism, which, unlike previous models, can explain O2 reduction across the whole range of solvents and for which the two previous models are limiting cases. We observe that the solvent influences O2 reduction through its effect on the solubility of LiO2, or, more precisely, the free energy of the reaction LiO2(*) ⇌ Li(sol)(+) + O2(-)(sol) + ion pairs + higher aggregates (clusters). The unified mechanism shows that low-donor-number solvents are likely to lead to premature cell death, and that the future direction of research for lithium-oxygen batteries should focus on the search for new, stable, high-donor-number electrolytes, because they can support higher capacities and can better sustain discharge.
We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis.
We report the first implementation of the fiber based microfluidic Raman spectroscopic detection scheme, which can be scaled down to micrometre dimensions, allowing it to be combined with other microfluidic functional devices. This novel Raman spectroscopic detection scheme, which we termed as Waveguide Confined Raman Spectroscopy (WCRS), is achieved through embedding fibers on-chip in a geometry that confines the Raman excitation and collection region which ensures maximum Raman signal collection. This results in a microfluidic chip with completely alignment-free Raman spectroscopic detection scheme, which does not give any background from the substrate of the chip. These features allow a WCRS based microfluidic chip to be fabricated in polydimethylsiloxane (PDMS) which is a relatively cheap material but has inherent Raman signatures in fingerprint region. The effects of length, collection angle, and fiber core size on the collection efficiency and fluorescence background of WCRS were investigated. The ability of the device to predict the concentration was studied using urea as a model analyte. A major advantage of WCRS is its scalability that allows it to be combined with many existing microfluidic functional devices. The applicability of WCRS is demonstrated through two microfluidic applications: reaction monitoring in a microreactor and detection of analyte in a microdroplet based microfluidic system. The WCRS approach may lead to wider use of Raman spectroscopy based detection in microfluidics, and the development of portable, alignment-free microfluidic devices.
Raman microspectroscopy is a label-free and nondestructive technique to measure the intrinsic chemical profile of single cells. The naturally weak Raman signals hampered the application of Raman spectroscopy for high-throughput measurements. Nearly all photosynthetic microorganisms contain carotenoids that are active molecules for resonance Raman at a 532 nm excitation wavelength. Hence, the acquisition time for a single photosynthetic microorganism can be as short as 1 ms. The carotenoid bands in Raman spectra of photosynthetic microorganisms utilizing (13)CO(2) shifted when compared to the spectra of cells utilizing (12)CO(2). Here, a mixture of (12)C- and (13)C-cyanobacterial cells were counted using a microfluidic-device-based Raman-activated cell counting procedure to prove the concept that Raman spectroscopy can be used as a high-throughput method to profile a cell population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.