Along with the development and growth of the internet network, and the rapid expansion of World Wide Web and local network systems have changed the computing world in the last decade. Nowadays, as more people make use of the internet, their computers and the valuable data in their computer system contain become more exposed to attackers. Therefore, there is an increasing need to protect computer and network from attacks and unauthorized access. Such that network intrusion classification and detection systems to prevent unlawful accesses. This work has taken the advantage of classification and detection abilities of Artificial Intelligent Techniques AITs algorithms to recognize intrusion(attack) and also detect new attacks. These algorithms are used to multi classifier and binary classifier for network intrusion and detect it, AITs such as unsupervised and supervised fuzzy clustering algorithms ( Fuzzy C-Mean FCM, Gustafson-Kessel GK, and Possibilistic C-Means PCM ), was applied to classify intrusion into 23 classes according to the subtype of attack. The same dataset classifies it into 5 classes according to the type of attacks (Normal, DoS, Probe, U2R, R2L). And also classifies this dataset into 2 classes (Normal, and Attack), one for normal traffic and another for attack, also these algorithms are used to detect intrusion.Other techniques were used which are artificial neural network (ANN) represented by counter propagation neural network (CPN) which is hybrid learning (supervised and unsupervised) that is applied to classify intrusion into 23, 5 and 2 class(es) and used it to detect the network intrusions, and then we combined fuzzy c-mean with two layers Kohonen layer and Grossberg layer for counter propagation neural network to produce the proposed approach or system that called it fuzzy counter propagation neural network (FCPN) were applied it to classify network intrusion into 23, 5 and 2 class(es) and detect the intrusion. DARPA 1999 (Defense Advanced Research Project Agency) dataset which is represented by Knowledge Discovery and Data mining (KDD) cup 99 dataset was used for both training and testing. This research evaluates the performance of the approaches that are used that obtained high classification and detection rate with low false alarm rate. The performance of the proposed approach FCPN is the best if it is compared with the other approaches that are used and with previous works. Finally, in this research comparisons are made between the results obtained from the application of these algorithms on this dataset and the FCPN is the best approach that is implemented into Laptop where, CPU 2.27GH and RAM are 2.00 GB.
Clustering or (cluster analysis) has been widely used in data analysis and pattern recognition. There are several algorithms for clustering large data sets or streaming data sets, Their aims to organize a collection of data items into clusters. These such items are more similar to each other within cluster, and difference than they are in the other clusters. Three fuzzy clustering algorithms (Fuzzy C-Means, Possibilistic C-Means and Gustafson-Kessel algorithms) were applied using kdd cup 99 data set to classify this data set into 23 classes according to the subtype of attacks. The same data set were classified into 5 classes according to the type of attacks. In order to evaluate the performance of the system, we compute the classification rate, detection rate and false alarm rate on this data set. Finally, the results obtained from the experiments with classification rate 100% which has not been obtained in any previous work.
The problem inherent to any digital image is the large amount of bandwidth required for transmission or storage. This has driven the research area of image compression to develop algorithm that compress images to lower data rates with better quality. This research present, a new approach to image compression based on clustering. This new approach includes new objective function, and its minimization by energy function based on unsupervised two dimensional fuzzy Hopfield neural network. New objective function consists of a combination of classification entropy function and average distance between image pixels and cluster centers. After applying new method on gray scale sample images at different number of clusters, better compression ratio and signal to noise ratio was observed. The new method is also a new clustering analysis method, and it provides more compact and separate clustering.
Error backpropagation neural network (EBP) used training algorithm for feedforward artificial neural networks (FFANNs). The main problem with the EBP algorithm that it is very slow and the converge to the optimal solution is not guaranteed. This problem leads to search for improvements to speed up this algorithm. In this research we use several methods to speed up the EBP algorithm. A many layer neural network was designed for building pattern compression system, encoding and recognition. We also used many methods to speed up this algorithm (EBP) and comparison between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.