The problem inherent to any digital image is the large amount of bandwidth required for transmission or storage. This has driven the research area of image compression to develop algorithm that compress images to lower data rates with better quality. This research present, a new approach to image compression based on clustering. This new approach includes new objective function, and its minimization by energy function based on unsupervised two dimensional fuzzy Hopfield neural network. New objective function consists of a combination of classification entropy function and average distance between image pixels and cluster centers. After applying new method on gray scale sample images at different number of clusters, better compression ratio and signal to noise ratio was observed. The new method is also a new clustering analysis method, and it provides more compact and separate clustering.
Error backpropagation neural network (EBP) used training algorithm for feedforward artificial neural networks (FFANNs). The main problem with the EBP algorithm that it is very slow and the converge to the optimal solution is not guaranteed. This problem leads to search for improvements to speed up this algorithm. In this research we use several methods to speed up the EBP algorithm. A many layer neural network was designed for building pattern compression system, encoding and recognition. We also used many methods to speed up this algorithm (EBP) and comparison between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.